
RL-TR-94-237 
Final Technical Report 
December 1994 

INTEGRATED HIGH 
PERFORMANCE DISTRIBUTED 
SYSTEM 

BBN Systems and Technologies 

Edward F. Walker, Christopher Barber, Buz Owen, John Zinky, 
Carl Howe, and Linsey O'Brien 

ABeiQi5JI9SSI I 

APPROVED FOR PUBLIC RELEASE; D/STR/BUT/ON UNLIMITED. 

19950403 030 
Rome Laboratory 

Air Force Materiel Command 
Griff iss Air Force Base, New York 



This report has been reviewed by the Rome Laboratory Public Affairs Office 
(PA) and is releasable to the National Technical Information Service (NTIS).  At 
NTIS it will be releasable to the general public, including foreign nations. 

RL-TR-94-237 has been reviewed and is approved for publication. 

APPROVED: low* i(atcf***^ 
THOMAS F. LAWRENCE 
Project Engineer 

FOR THE COMMANDER: 

HENRY J. BUSH 
Acting Deputy Director 
Command, Control & Communications Directorate 

If your address has changed or if you wish to be removed from the Rome Laboratory 
mailing list, or if the addressee is no longer employed by your organization, 
please notify RL (  C3AB ) Griffiss AFB NY 13441.  This will assist us in maintaining 
a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a 
specific document require that it be returned. 



REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Pubic reporting burden for this colection of information ts estimated to average 1 hour per response, inducing the trne for reviewing instructions, searching existing data sources, 
gatherhg and mahtahhg the data needed, and completing and reviewing the colection of nformation Send conments regardng this burden estrnate or any other aspect of this 
colection of nformation, hdudhg suggestions for reduchg this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson 
Davis Highway. Sute 1204, Arfrigton, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 

1. AGENCY USE ONLY (Leave Blank) Z REPORT DATE 
December  1994 

3. REPORT TYPE AND DATES COVERED 
Final         Aug  92 - Feb  94 

4. TITLE AND SUBTTTLE 

INTEGRATED HIGH PERFORMANCE  DISTRIBUTED  SYSTEM 

5. FUNDING NUMBERS 
C    - F30602-92-C-0102 
PE -  62702F 
PR -  5581 
TA -  21 
WU  - AF 

6. AUTHOR (S) 
Edward F.   Walker,   Christopher Barber,   Buz  Owen, 
John  Zinky,   Carl Howe,   and Linsey O'Brien 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 
BBN Systems  and Technologies 
10 Moulton  Street 
Cambridge MA  02138 

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

BBN Report No.   7987 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES) 

Rome Laboratory   (C3AB) 
525  Brooks Rd 
Griffiss AFB NY 13441-4505 

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

RL-TR-94-237 

11. SUPPLEMENTARY NOTES 

Rome Laboratory Project Engineer:     Thomas  F.   Lawrence/C3AB/(315)   330-2805 

12a DISTRIBUTION/AVAILABILITY STATEMENT 

Approved  for public  release;   distribution unlimited. 

12b. DISTRIBUTION CODE 

1 3. ABSTRACT (Maximum 200 words) 

The objective of  the Integrated High Performance Distributed  System   (THPDS)   project 
is  to  design,   implement,   and demonstrate  a  distributed programming environment  that 
will   integrate and  support very high bandwidth networks with heterogeneous  computer 
architectures,   including  parallel  and  specialized processors,   and  that will  support 
multiple programming models.     The  IHPDS  project   is  developing  the Photon distributed 
programming environment  to meet  the  emerging needs  of  distributed application 
programmers.     Photon provides  an object-oriented programming model.     This  provides 
users with a  consistent  view of all  services while  insulating  the user  from the 
implementation  details  of  those  services.     This  enforcement  of modularity and  the 
separation of policy and mechanism make  the object model a powerful way  to build 
large-scale,   distributed applications.     Photon  is a  distributed  computing  environment 
that  supports  distributed application  development  across heterogeneous machine 
architectures  and programming  languages.     It   is  particularly  targeted  to  support  the 
needs  of high performance applications.     Photon not  only supports  applications whose 
components  are  located within a  single  local  area network,   but also   supports 
applications whose  components  are widely dispersed  geographically. 

14. SUBJECT TERMS 
Distributed  computing,   High performance  computing,   Object- 
oriented  systems,   Distributed  computing  environment 

15. NUMBER OF PAGES 
56 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 
UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 
UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 
UNCLASSIFIED 

20. LIMITATION OF ABSTRACT 

UL 
NSN 7540-01 -280-5500 Standard Form 298 (Rev 2-89) 

Prescribed by ANSI Std Z39-18 
298-102 



Table of Contents 

Chapter 1.   Introduction  1 

1.1   Document Overview 2 

Chapter 2.   An Overview of Photon 3 

2.1 Photon Mechanisms 3 
2.2 Objects 4 
2.3 Multiple Layers of Naming 4 
2.4 Explicit Location Mechanism 5 
2.5 Global Futures 5 
2.6 Distributed Shared Memory 8 
2.7 Language Veneers 9 
2.8 Proxy Objects 10 

Chapter 3.   Photon Architecture 11 

Section 3.1   The Basic Services Layer 12 
3.1.1 Abstract Data Types 12 
3.1.2 Messaging Support 12 
3.1.3 Unique Ids 13 
3.1.4 Communication Support 13 
Section 3.2  The Advanced Services Layer 15 
3.2.1 Object Registration 15 
3.2.2 Object Implementation Support 15 
3.2.3 Object Access 16 
3.2.4 Global Futures 20 
3.2.5 Distributed Shared Memory 21 
Section 3.3   Photon Object Services Layer 23 
3.3.1 Interface Definition Language 23 
3.3.2 Language Veneers 23 
3.3.3 Naming 27 
3.3.4 Location/Binding 28 
3.3.5 Photon ADT and Class Registration 28 
Section 3.4   Inter-Layer Modules 30 
3.4.1 Security 30 
3.4.2 Monitoring 30 
3.4.3 Administrative Domains 31 

Chapter 4.   Resource Management in the Photon System 32 For 

4.1 Introduction 32 Jd 
4.2 A Resource Management Perspective of a System 33' L' 
4.3 Overview of Resource Management Problems 35 ~ 
4.3.1 Minimize Resources Problem 35 
4.3.2 Adaptive Allocation Mechanism Problem 36 

ya/r-r 



4.3.3   Regulate Usage Problem 37 
4.4  Overview of the System Development Process 37 

Chapter 5.  Summary of Technical Progress and Suggestions for Further 
Research 40 

5.1 Technical Progress 40 
5.2 Suggestions for Future Direction 42 

Chapter 6.   References 43 



Table of Figures 

Figure 2-1:   25% savings in communication latency realized through use of global 
futures 7 
Figure 2-2:   67% savings in communication latency realized through use of global 
futures 8 
Figure 3-1:   Photon Architecture 11 
Figure 4-1:   Resource management view of system characteristics 34 
Figure 4-2:    In order to make resource management problems tractable, most 
system characteristics are assumed constant 35 
Figure 4-3:    Evolution of objects, resources, and applications 38 
Figure 5-1:   Photon Implementation 41 

in 



Chapter 1.   Introduction 

The objective of the Integrated High Performance Distributed System (IHPDS) project is to design, 
implement, and demonstrate a distributed programming environment that will integrate very high 
bandwidth networks with and support heterogeneous computer architectures including parallel and 
specialized processors, and that will support multiple programming models 

The driving motivation behind this project is the desire to make the most of emerging high 
performance computing environments. The future computing environment will be composed of high 
speed computers and high bandwidth networks, but the networks will have a "high" latency. 
Advances in computer architecture have resulted in orders of magnitude of improvement in processor 
speed since less than a decade ago. Even greater improvements in processor speed can be 
expected in the future. Network bandwidth has also improved substantially, from 10 megabit/second 
Ethernet networks to 100 megabit/second FDDI networks to even higher bandwidth ATM networks. 

However, network latency has not improved substantially. For example, polling latency in high 
bandwidth FDDI networks can cause the transmission delay of small messages to be longer in FDDI 
networks than in Ethernets. While modern networks are providing a wider "data highway," the "speed 
limit" has not increased. The speed of light imposes a fundamental limit on achievable latency. 
Improvements in processor speed have far surpassed possible improvements in network latency. 
Network latency, measured in terms of MIPS, has become much higher. 

The challenge to application developers in such an environment is to make effective use of 
processing speed and network bandwidth, while at the same time avoiding the costs of network 
latency. The IHPDS project is developing the Photon distributed programming environment to meet 
the emerging needs of distributed application programmers. Photon is designed to avoid unnecessary 
communication and otherwise minimize the effects of latency in its own implementation, and provides 
mechanisms to application builders to help them minimize message traffic and thereby lessen the 
effects of latency. 

Photon must be capable of accommodating a wide variety of computers, networks, and programming 
languages. The performance demands and diversity of missions in C2 environments require a 
heterogeneous computing and communications environment. The heterogeneous environment consists 
not only of general-purpose computers, but also supercomputers, parallel processors, graphics 
Tenderers, digital signal processors, and other specialized platforms. Each platform provides 
specialized resources to the computing environment, but the applications using these distributed 
resources require that they operate as a unified and consistent whole. Photon provides a uniform 
programming model over a wide range of computing platforms to achieve this goal. 

Photon provides an object-oriented programming model. This provides users with a consistent view of 
all services, while insulating the user from the implementation details of those services. This 
enforcement of modularity and the separation of policy and mechanism make the object model a 
powerful way to build large-scale, distributed applications. 

Nonetheless, there are many applications that do not naturally fit into this model. Photon provides a 
distributed shared memory model as an alternative to the object-oriented model for such applications. 

Photon must be scalable to accommodate large user and service populations. As military networking 
expands to provide near-universal connectivity, the range of services that users of the network 



require will also expand. In particular, we expect that there will be increasing information flow across 
service boundaries to support C2 operations, and it is critical that Photon support and not hinder that 
expansion. Therefore Photon is designed for efficient large-scale operation to accommodate this 
expansion. 

Photon is intended to be as simple and easy to understand as possible for its users. The 
complexities needed to manage distributed operation and to achieve high performance will be largely 
hidden behind easy to use interfaces. 

Photon addresses the high cost of network latency in all aspects of its design, and in the 
mechanisms it provides. Avoiding unnecessary communication is the key to high performance 
applications in the developing distributed computational environment. Photon will provide a natural 
environment for heterogeneous, high-performance, distributed programming and will support such 
diverse applications as C2- multimedia conferencing, distributed databases, and distributed 
simulations. 

1.1   Document Overview 

This document is organized around a discussion of Photon. Chapter 2 gives an overview of Phton. 
This chapter can be skipped by readers already familiar with the basics of Photon. Chapter 3 
presets a detailed description of the Photon architecture developed under the IHPDS project. 
Chapter 4 discusses resource management in Photon. Chapter 5 presents a summary of the 
technical progress made under the IHPDS project, and makes recommendations of areas for further 
research.   Chapter 6 contains the list of references. 

2 - 



Chapter 2.  An Overview of Photon 

Photon is a distributed system architecture intended to provide an object-oriented distributed 
computing environment for the next generation of high performance distributed applications. The 
system provides the application leveloper with tools which facilitate the effective utilization of very 
high bandwidth communication, parallel and specialized computer architectures, and allow the use of 
multiple programming paradigms. 

The construction of a distributed application can be simplified by using a distributed computing 
environment. A distributed computing environment offers tools that facilitate the construction of clients 
and servers. Typically the application builder provides a specification of a server's interface; the 
distributed computing environment generates stubs from the user's interface description for use in 
client programs, and also generates the framework for a server supporting the interface. The 
programmer only has to be concerned with application-specific code; the distributed computing 
environment takes care of the details of message packing and communication. 

Often distributed applications need to run over a mix of computer architectures and operating 
systems. Application builders might desire to reuse software written in several different programming 
languages, without having to translate it. Therefore, it is desirable for a distributing computing 
environment to support applications that run on a heterogeneous mix of machines, operating systems, 
and have components written in different programming languages. 

Photon is a distributed computing environment that supports distributed application development 
across heterogeneous machine architectures and programming languages. It is particularly targeted 
to support the needs of high performance applications. Photon not only supports applications whose 
components are located within a single local area network, but also supports applications whose 
components are widely dispersed geographically. 

2.1   Photon Mechanisms 

Photon provides high-performance operation and data transfer while retaining an object-oriented 
programming model. Because Photon is object-oriented, it provides features such as abstraction, 
encapsulation, and modular client/server interfaces. Furthermore, it includes abstractions to enhance 
performance such as support for parallelism, explicit data dependence, data streaming and 
redirection, and location binding. Finally, it provides these features in a modular and customizable 
fashion that facilitates implementation on a wide variety of platforms. 

Subsequent sections describe the key mechanisms within Photon.  These mechanisms are: 

- Objects 
- Multiple layers of naming 
- Explicit location mechanism 
- Global futures 
- Distributed shared memory 
- Language veneers 
- Proxy objects 

3 - 



2.2 Objects 

The fundamental building block in Photon is the object. Photon objects have the following 
characteristics: 

Objects  are   instances  of  classes  that  define  both  the  data  representations  and 
operations for manipulating the data for that object. 

The implementation of objects is encapsulated and hidden from the user. 

Communication with objects is accomplished through messages passed between the 
user and the object implementation. 

Objects can  reside  on  multiple  hosts  in the  environment and operations can  be 
requested of them from any host. 

Objects  may or may not  have  internal  state and this state  may or may not be 
persistent. 

Our definition of objects is very general because we do not wish to limit the ways in which objects 
can be manipulated. A very high performance distributed system should have the flexibility to 
optimize how operations are performed without causing the behavior of those objects to change. For 
example, if the system recognizes that a program and an object it manipulates reside on the same 
machine, direct access to the object's data through shared memory can permit object operations that 
have performance comparable to a simple subroutine call. However, the system can only permit this 
type of optimization if it can still guarantee that the program performs the operation correctly and that 
the object's integrity remains intact. Therefore, Photon limits the amount of information that a 
program and an object are permitted to know about each other to that specified in a public interface 
description. This restriction provides maximum flexibility in the implementation of the object and 
permits Photon to dynamically select from multiple implementations in order to maximize performance. 

Objects are implemented in Photon by servers. Servers are simply programs that represent one or 
more objects and have a published set of operations that can be performed on those objects. 
Servers are the mechanisms through which objects are realized in the system; if an object has no 
server, no operations can be performed upon it until a server is created for it. All Photon services 
are provided either by servers or by code compiled or linked into the user's program. Because the 
built-in services provided with Photon are also provided within the object model, new services added 
by the user are indistinguishable from those provided by the system itself. Therefore, Photon can be 
considered an extensible distributed system. 

2.3 Multiple Layers of Naming 

Photon includes multiple levels of naming. These include symbolic names, location-independent or 
logical names, and location-dependent or physical names. 

Symbolic names provide methods of addressing services that can be understood easily by humans. 
Symbolic names are usually alphanumeric strings such as "MandelbrotComputeServer." Symbolic 
names are converted into other types of names by a name service. The name service is 
implemented as a collection of servers that can be accessed by any Photon client. The function of 
these servers is very simple: given a symbolic name, they return a location-independent name. 

Location-independent or Logical Object IDs (LOIDs) are used to identify a service without being 
specific regarding its location. LOIDs are fixed-length structures and are not necessarily easy to 
interpret other than by machine. However, they do provide a unique identification for a service 

- 4 - 



throughout the Photon system and this identification can be either stored or used to access servers 
through the locate operation. Note that LOIDs can be resolved to more than one object or server. 
Protocol stacks supporting multicast addressing may wish to associate multicast addresses with 
LOIDs. 

Location-dependent names or Physical Object IDs (POIDs) are names that specify the physical 
location of an object in Photon with respect to the underlying communications network. Use of 
POIDs allows the system to associate an object with a communications link or connection and 
thereby optimize the communication over that link. These names are bound to the underlying 
communications protocols the application wishes to use. 

2.4 Explicit Location Mechanism 

Photon requires that a process know the location-dependent name of an object before it can perform 
operations upon it. The location-dependent name is discovered by doing a locate operation on a 
location-independent name. This means that even when an object may be replicated on many nodes, 
the system will select only one of these objects at the time a client does a locate operation. The 
client will continue to use that instance of the object until there is a reason not to (such as an 
exception). 

This method is a departure from the approach taken in a system previously developed at BBN, the 
Cronus [BERETS89] [SCHANTZ85] distributed computing environment. In Cronus, because the 
system performs location transparently as needed, programmers only need to deal with 
location-independent names. This approach was not felt to be sufficient for Photon. Although 
Photon does permit programmers to delegate the mapping to the system if they desire, the system 
supports explicit programmer control over the mapping. Having control is important for high 
performance applications which may want to specify exactly when location is performed in order to 
control the timing of the necessary overhead. Furthermore, when several possible mappings for a 
LOID exist, it may be important for an application to be able to explicitly choose one that best 
satisfies its performance goals. 

2.5 Global Futures 

Many techniques exist for allowing a single process to start and control several concurrently executing 
activities. These include multitasking, futures, and streams. Multitasking approaches include the 
concept of threads provided by Mach [Rashid 1986] and by POSIX threads [POSIX 1992]. In 
multitasking systems, each thread may be blocked waiting for a different remote request. When the 
request is finally satisfied, thread execution continues, guided by normal scheduling policy. Futures 
include the approach taken by Cronus [Walker 1990]. Rather than blocking RPC requests until the 
value is returned, the request returns a "future" which can be claimed when the value is needed. A 
thread may have several pending futures, and may invoke requests that create more. Futures may 
be combined into a "future set" which can then be used to block the thread until one of the set's 
values has been received. Streams, such as those implemented in Mercury [Liskov 1988], allow a 
client to submit a sequence of requests and then claim the replies in the same order as the requests 
were given. This allows client and server to execute in parallel. This range of approaches is 
generally adequate for distributed processing driven by point-to-point requests between a single 
client and many servers. 

The global future is an addition to the basic RPC/call stream model. In the global future model, a 
caller may issue remote procedure calls to various servers and receive the results of these calls at a 
later time.   The asynchrony inherent in the future mechanism allows the client to issue many calls 

- 5 



before receiving the results of the first; this allows computation in the server to proceed in parallel 
with computation in the client, since the client does not have to wait for results from one call before 
issuing a second call. 

Global futures extend this capability by allowing the client to issue calls to several servers, with output 
from a call executed by one server being transmitted directly to a second server. This forwarding of 
data allows computation in the server to proceed without the client being a bottleneck between them. 
The computation in the servers may also proceed in parallel. 

A future is a typed value. It has a globally unique ID. When the client directs the server to perform 
a computation, it issues an RPC, for example: ObjlD.operation(input_paramJist, output_param_list). 

In a remote procedure call without global futures, only the values of the input parameters would be 
communicated to the server, and later the values of the output parameters would be sent back to the 
client by the server. Only then could the client supply the value received as an input parameter to 
another RPC call to a different server. 

By using global futures, the client can cause a result to be forwarded directly from one server to 
another without its passing through the client. The client does this by specifying the ID of a global 
future in place of one or more of the input or output parameters. When a future is supplied instead 
of an output parameter, it will usually specify a distribution list. The distribution list directs the server 
to send a copy of the output value to each of the destination hosts in the list as soon as the value is 
computed. When an input parameter is specified as a global future, the server waits for the value to 
arrive, binds the value received to the parameter occupied by the future, and then proceeds with the 
operation requested. Since future IDs are allocated by the client without consulting the server, a 
client can set up a flow of values from one server to another with no waiting for intermediate results. 
As a result, the joint computation between the servers will complete as soon as possible. 

Figures 2-1 and 2-2 illustrate how global futures can be used to reduce communication latency. In 
each example, a global future is used to eliminate one or more unnecessary message trips from the 
server to the client and back to the same server or a different one. 



Client desires to call A, obtaining a result it then passes to B to obtain the final result. 

Without Futures: 

RPC1(A, &Result1) ; 
RPC2(B, Result"!, &Result2) 

BOSTON 

With Futures: 

RPC1 (A, &futureResult1) ;     (returns immediately) 
RPC2(B, futureResultl, &Result2) ; 

BOSTON 

25% Savings 
in Latency 

Figure 2-1:  25% savings in communication latency realized through use of global futures. 

7  - 



Without Futures: 
RPC1(A, &Result1) ; 
RPC2(A, Result1,&Result2) ; 
RPC3(A, Result2, &Result3); 

RPC1 

RPC2 

RPC3 

With Futures: 
RPC1(A, SfutureResultl); 
RPC2(A, futureResultl, &futureResult2); 
RPC3(A, futureResult2, &futureResult3); 

Result of RPC1 

RPC1.RPC2, RPC3 

Figure 2-2:  67% savings in communication latency realized through use of global futures. 

2.6  Distributed Shared Memory 

Photon includes a distributed shared memory abstraction in addition to message passing based on 
Photon objects. Distributed shared memory is a more convenient abstraction than message passing 
for some applications. 

Photon is targeted to a heterogeneous environment. This immediately raises two issues. First, there 
is the question of reconciling differing pages sizes among heterogeneous platforms. Second, there is 
the question of differences in data alignment and representation between among such platforms. 

Photon solves the problem of selecting a page size by not segmenting the distributed memory in 
terms of pages.   Pages cause false sharing that can lead to unnecessary thrashing.   A page can 

- 8 - 



contain several data objects; two processes that do not access any of the same data objects can end 
up trashing due to conflicts over pages that contain multiple objects that happen to be accessed by 
both processes. 

Instead of segmenting memory by pages, Photon segments the distributed memory by abstract data 
object. Each segment of memory contains a complete abstract data object. The segments are 
therefore of variable size. 

The solution to the second problem, that of handling different data representations, is related to the 
solution of the first. Each segment of memory contains an abstract data object whose type can 
readily be determined by Photon. Given this type, Photon can convert object instances of the type to 
and from a common external representation based on the specification of the type provided by the 
programmer in a special definition language (a slightly modified version of CORBA's IDL [CORBA93]). 
When a memory segment is mapped into a process' address space, Photon converts the enclosed 
data object from external format to local format. When a memory segment is propagated, Photon 
converts the enclosed data object to its external format. 

Photon optimizes the case where two processes sharing the distributed shared memory reside on the 
same platform.   In this case, actual shared memory is used. 

To improve the performance of the distributed shared memory, Photon allows application 
programmers to provide information to the system about the intended pattern of memory use. This 
knowledge makes it possible for Photon to optimize performance and eliminate unnecessary 
communication. Programmers indicate an access pattern to Photon by tagging each memory segment 
with a memory access type. Several different memory access types are supported. Untagged 
memory segments are managed in a fashion that preserves consistency regardless of the pattern of 
use.   This approach was first used in Munin [Bennett 1990]. 

Photon includes an important mechanism for reducing the latency of distributed shared memory 
access. In Photon, one object in a memory segment can contain a reference to an object in another 
memory segment. Photon permits application programmers to indicate that some of these references 
are "down pointers." By doing so, the programmer indicates to the system that the application is 
likely to access the referenced object if it references the enclosing object. Photon uses this 
information to prefetch segments that are the targets of down pointers when the referring object is 
accessed. If any of the prefetched segments are actually accessed, no time must be spent waiting 
for the segment to be propagated from a site with a copy. 

Prefetching memory segments in this fashion trades off latency for network bandwidth. This is an 
appropriate trade off in the current state-of-the-art distributed environment. Gains in network 
bandwidth have far outpaced reduction of network latency, and this trend is sure to continue in the 
future, especially since improvements in latency are ultimately bounded by the speed of light while 
improvements in bandwidth do not face any such physical limit. 

2.7   Language Veneers 

One of the major goals of Photon is to provide a programming environment which is convenient and 
natural to its users, whatever programming language is being used. Since different programming 
languages such as C++, Lisp, and Ada encourage very different programming styles and paradigms, 
Photon tries to fit the style of the language being used as closely as possible. For this reason, rather 
than provide a single, monolithic API (Application Program Interface), the same in all languages, 
Photon provides a different language veneer for every supported language. Our initial efforts have 
been concentrated on constructing a language veneer for C++. We chose C++ to start with because 
that language's features allow us to hide many of the complex details of distributed programming and 

- 9 - 



present natural abstractions to the Photon user without having to extend the language. In the C++ 
veneer, a Photon object class is readily modeled as a C++ class. 

Each language veneer has two main components: (1) an API for that language providing access to 
common Photon services, and (2) code generators which will produce declarations and code 
templates for object servers and the like. 

2.8   Proxy Objects 

One of the key elements in object-oriented language veneers is that of proxy objects. Proxy objects 
are class definitions that represent remote objects within a client program. These class definitions 
are created by the class designer to work cooperatively with servers of that object class. Proxy 
objects permit the class designer to implement arbitrary caching and consistency policies between 
clients and servers. 

Proxy objects can play a key role in obtaining acceptable performance. Without proxy objects, a 
designer of an object interface can encounter a conflict between aesthetics and communication 
efficiency. If invoking each method necessarily entails a remote procedure call, the object designer 
will be tempted to trade off ease of use and define unnatural methods that try to piggyback several 
"natural" methods into a single call. With proxy objects, a method invocation on a Photon object 
does not necessarily entail any communication. The object designer can create an aesthetic object 
interface, and use a proxy object to obtain an efficient implementation. 

Remote procedure calls are simply a special case of proxy objects. RPC stubs generated from an 
ODL are merely proxy objects that send a message to the server for each operation requested upon 
an object. However, it is not difficult to visualize object definitions where these trivial proxy objects 
cause unneeded communication. For example, imagine that there exists a class ball that has 
operations define_color and read_color. A client might contain code such as the following: 

color c; 
ball b; 
b.define_color(red); 

c = b.read_color(); 

Using an RPC proxy object, these two operations would require two separate messages to be sent to 
the ball server, and two replies to be received. However, a more intelligent proxy object might simply 
notify the ball server that ft was maintaining a cache of b's object attributes and cache the color of 
the ball in a local state variable. Then when the read_color operation was requested, the local proxy 
object could reply red without any further communication with the server. 

10 



Chapter 3.   Photon Architecture 

This chapter is organized around a discussion of the Photon architecture illustrated in Figure 3-1. 
Each layer of the architecture is discussed in a subsequent section. The architecture has been 
designed to provide applications with high performance in an environment where communication has 
a high latency relative to processor speed. The architecture is divided into three layers: the Object 
Services layer, the Advanced Services layer, and the Basic Services layer. In the Photon architecture, 
a layer is permitted to use the functionality of any lower layer, but not an upper layer. Two functional 
modules do not fit into any particular layer, and straddle all the layers: security and monitoring. 

Application Layer 

Photon 
Object Services 
Layer 

Interface Definition 
Language 

Language 
Veneers 

Location/Binding Class/ADT 
Registration 

Photon 
Advanced Services 
Layer 

Object 
Registration 

Global 
Futures 

Distributed 
Shared Memory 

Object Implementation 
Support 

Object Access 
(proxies) 

Photon 
Basic Services 
Layer 

Abstract Data 
Types 

Messaging 
Support 

Photon Communication 
Support 

s 
E 
C 
u 
R 
I 
T 
Y 

M 
0 
N 
I 
T 
0 
R 
I 
N 
G 

Constituent Operating System Layer 

Figure 3-1:   Photon Architecture 

11 



Section 3.1   The Basic Services Layer 

The Basic Services layer is the lowest layer in the architecture and provides the basic functionality of 
Photon. This layer contains the following functional modules: Abstract Data Type Module, Messaging 
Support Module, Unique Id Module, and the Communication Support Module.   (See Figure 3-1.) 

3.1.1 Abstract Data Types 

In a distributed program operating in a heterogeneous environment, it is necessary to have safe 
means to transmit data between sites with differing data-structuring schemes. Since the data needs 
to be converted from one format to the other, it is necessary for the conversion functions involved to 
know the structure of the data. This is best done by encapsulating such data within abstract data 
types which have associated conversion functions. In Cronus, this is done through "cantypes" which 
belong to a particular Cronus type (analogous to a Photon class); in Photon, ADTs (Abstract Data 
Types) provides such a mechanism. For a datum to be transmissible in Photon, it must be declared 
as an Abstract Data Type. 

Photon ADTs differ from cantypes in a number of ways. Like cantypes, ADTs support basic data 
types such as integers and character strings and structured types such as records and arrays. ADTs 
also support tagged unions which are not currently supported for Cronus cantypes. Photon ADTs are 
grouped into packages in order to limit name clashing problems, but are not associated with any 
particular Photon class. A class need only import an ADT package in order to make use of the ADTs 
contained in it; a Cronus type, on the other hand, in order to use a cantype must be a descendant of 
the type which defines that cantype. ADTs have automatically generated encoding methods to 
convert data to and from a universal transmissible representation, have computationally inexpensive 
"as is" encoding methods for transmission between data-compatible architectures, and also allow 
programmers to create their own custom encoding methods for their ADTs. 

Although Photon includes a number of built-in ADTs, most complex applications will require the 
definition of additional data types. Photon will provide an ADT definition language which will allow 
programmers to define packages of new ADTs. These specifications will be parsed and converted to 
an internal form which may either be stored in an ADT database or in separate files. The internal 
form, called an ADT package descriptor, will act as a specification for code generators to create 
appropriate interface and implementation code for various language veneers, to which the 
programmer may add code implementing custom encoding methods. 

Photon uses the CORBA Interface Definition Language (IDL) as the ADT definition language. The 
CORBA IDL supports the basic and structured types needed in Photon, and even has a public 
domain compiler. 

3.1.2 Messaging Support 

The Messaging Support module supports message assembly and buffering. The primary goal in the 
implementation of this module is to avoid unnecessary copying, which can significantly add to 
overhead. Various researchers have shown that unnecessary message copying and scanning can 
overwhelm the actual costs of necessary communication protocol processing [CLARK89, CLARK90, 
and THEKKATH93]. Some interesting research has also been done by [DRUSCHEL93] in protocol 
architectures for high-performance communication. 

12 



3.1.3 Unique Ids 

The Unique Id module supports the generation of globally unique identifiers. These identifiers are 
used to provide unique type and class tags, and unique Photon object identifiers. These identifiers 
are unique across all threads on all possible Photon hosts. It is possible to safely and efficiently 
generate multiple unique identifiers (UIDs) in parallel, avoiding any sort of UID generation bottleneck 
due to having to communicate with some central service or having to block on a semaphore. 

Unique identifiers (UIDs) have the following components: 

A globally unique host identifier, indicating the host upon which the UID is generated. The host 
identifier is assigned to the host when Photon is installed, and is independent of the host's 
network address (although it might contain the network address). (This avoids many 
difficulties when a host's network address is changed.) 

A timestamp, identifying the creation time of the UID. The timestamp may be in a system-specific 
format but should have a granularity at least small enough to guarantee that process and 
thread identifiers cannot be recycled nor all the values of the counter be run through during a 
single tick. A one second granularity should be sufficient for this purpose. 

A locally unique process, and if necessary, thread identifier, specific to the host upon which the 
UID is generated. This uniquely identifies the thread of execution in which the UID was 
generated. Note that it is possible for a system to generate the same process or thread id for 
different threads over the course of time, but not within the granularity of the timestamp. (All 
systems we are aware of go through the entire range of id values before recycling one, thus 
in actual practice an id won't be used until a number of hours have gone by.) 

A counter, specific to each thread generating a UID. This will allow the same thread to generate 
multiple UIDs within the granularity of a single timestamp. For instance, if the granularity of 
timestamps is 1 second, a thread may generate multiple UIDs in the same second by 
incrementing the counter for every new UID. The counter will roll over back to zero when it 
reaches its maximum value. 

3.1.4 Communication Support 

The Communication Support module provides the basic functionality needed to transmit and receive 
messages. It will support high performance communication over wide area and local area networks as 
well as local communication within a single host with one or more processors. Communication over a 
mix of networking technologies will be supported, including ATM, FDDI, and Ethernet. 

Explicit object location, an I PC kernel-less architecture, and the use of a technique we call dynamic 
method binding permit achieving high performance communication in Photon. The Communication 
Support module will provide different implementations of communication tailored for various 
environments, principally, intra-host, LAN, and WAN communication. Photon uses dynamic binding at 
run time to make the choice of which communication implementation to use. 

Dynamic method binding is invoked as part of the location of an object. When a client is bound to 
an object, the object engages in a negotiation with the Photon support code in the client to identify 
the best communication paths between the two processes. The object then instructs the client as to 
which compiled-in Photon routines to use to achieve this communication. The client code stores that 
information and uses it to select the optimal code for invoking the object methods. This technique 
allows the same program to be run under Photon in both distributed and parallel environments 

13 



without sacrificing performance in either. It also permits programs to be run in both LAN and WAN 
environments without sacrificing performance. 

The intra-host communication implementation is used when method invoker and object can share 
physical memory. This implementation supports high performance for Photon applications running on 
a shared-memory multiprocessor. Sender and receiver will communicate by placing messages in a 
portion of memory mapped into both processes' address spaces. Although older Unix systems did not 
support shared memory, virtually all modern multi-user operating systems support this facility (e.g., 
VMS, SVR4, OSF/1, and Mach all support shared memory in some form). Thus, this approach 
should be feasible on all of the systems for which Photon will be supported, although the underlying 
implementations might be slightly different due to differences in the shared memory interfaces 
supplied by the constituent operating system. 

High performance is the primary goal in the implementation of support for network communication. 
While the most straightforward implementation would be to build on top of TCP/IP, some researchers 
have abandoned TCP/IP and implemented directly on top of the network interface device in order to 
achieve the highest possible performance [THEKKATH93, KRST93]. This approach hinders portability 
as the system becomes dependent on operating system internals and network device controller 
particulars. Furthermore, implementing a protocol from scratch that will work in a wide area 
environment would mean reimplementing the flow control, packet fragmentation and reassembly, and 
other mechanisms of TCP/IP - a formidable and duplicative task. Consequently, the communication 
implementations in the cited references choose to avoid these problems by restricting their domain to 
local area communication. Photon will take a similar approach: the WAN communication 
implementation will be built on top of TCP/IP while the LAN implementation will be built below TCP, in 
order to achieve better performance. 

- 14 



Section 3.2  The Advanced Services Layer 

The Advanced Services layer is the intermediate layer in the Photon architecture and provides the 
functionality that supports Photon objects. This layer contains the following functional modules: Object 
Registration, Global Futures, Distributed Shared Memory, Object Implementation Support, and Object 
Access.   (See Figure 3-1.) 

3.2.1 Object Registration 

The Object Registration service provides the means for Photon objects to publish their existence so 
that they can be located and accessed. Every Photon object has a unique object identifier; to publish 
■tself, a Photon object will hand its identifier to the Object Registration service. The service will then 
i responsible for enabling the location of the object given its identifier. 

Photon supports the notion of a wildcard object identifier. Instead of identifying a particular object 
instance, a wildcard identifier refers to any object of a specified class. Applications use wildcard 
identifiers in a situation where any object of a given class can be used satisfactorily. A common 
example of such a situation would be an object that performs computation, such as an object that 
performs matrix multiplication. An application which multiplies matrices probably does not need to 
specify which particular instance of the object performs the multiplication. In fact, forcing the 
application to make such a choice could lead to extra communication cost or poor load balancing if 
the application were to pick an object on a remote or overloaded machine. By binding to a wildcard 
identifier instead of an object identifier, the application allows Photon to make an appropriate choice 
of object instance based on distance and load. Since the class identifier will be an implicit part of 
each object's unique identifier, the Object Registration service will have the information needed to 
resolve wildcard identifiers, for any objects that publish themselves. The service will supports two 
mappings for wildcard identifiers: one which transforms a wildcard identifier directly into a location 
and another which transforms a class identifier into a set of object identifiers, which can later be 
mapped into locations. 

Photon supports plural object identifiers. A plural identifier encapsulates and hides the fact that a 
service may in fact implemented by many server objects. In the case of a replicated object, for 
example, several object instances will each serve as a replicand. All the replicands collectively make 
up the service. In terms of correct operation, it does not matter which object instance replicand 
receives an application's method invocation (although it may matter in terms of performance). A 
plural identifier provides a name for the collection of replicands that make up a replicated object. By 
binding to a plural identifier, instead of an identifier of a specific replicand, the system can choose a 
replicand instance based on performance considerations. The replicated nature of the object can in 
fact be totally hidden from the application by the plural identifier. Object Registration will maintain the 
information about the collection of identifiers that make up a plural identifier. A plural identifier is 
allowed to contain other plural identifiers. Because of this, the Object Registration service will need to 
be able to detect and handle the expansion of plural identifiers with recursive definitions. 

3.2.2 Object Implementation Support 

The Object Implementation Support module provides the infrastructure that supports Photon objects. 
Application programmers need only provide the application-specific code necessary to implement an 
object's methods.   Code supplied by this module will handle the tasks of decoding a newly received 

15 



method invocation message, unpacking the arguments, dispatching to the appropriate method routine 
provided by the application programmer, and  packing up a reply message. 

Photon objects will support multiple threads ot control. Each method invocation will run in its own 
thread; multiple method invocations can run in parallel for the same Photon object barring any 
application-specific synchronization restrictions. The Object Implementation Support library will be 
thread safe, allowing preemptive threads to be used within a Photon object. Support for preemptive 
multithreading will be built on top of the POSIX thread interface (pthreads). Programmers using the 
Ada and C language veneers will use the pthreads interface directly, while those using C++ will be 
provided with easy-to-use classes which will hide some of the mundane initialization and 
management tasks but will still provide the same functionality as pthreads. This decision was 
motivated by the following considerations: 

Functionality: Pthreads has sufficiently rich functionality for all potential Photon uses. It supports 
multiple thread-specific data keys, thread cancellation, user-specified cleanup routines, 
priority scheduling, and access to other scheduling attributes. 

Familiarity: Pthreads is the emerging thread package standard. As such, its interface will become 
familiar to a wide audience of engineers engaged in multithreaded programming. It will be 
easier in the long run for Photon programmers to use the familiar pthreads interface than to 
have to learn a Photon-specific one. 

Portability: Since it is a standard, pthreads will look the same on all compliant platforms, so 
programmers won't have to learn a new thread package for every new system. For this 
reason, we will avoid using any system-specific thread package directly (e.g., Solaris's thread 
package). 

Economy of design effort: Much work has already gone into the design of POSIX threads. While it 
is likely that improvements could be made to the design, it is much more economical to put 
trust in the existing design rather than have to hash out the same problems over again in our 
own design. 

Economy of Implementation effort: Since it is the emerging standard, it is likely to be supported on 
most new platforms. It is the supported thread interface on OSF/1 and is promised by Sun for 
Solaris as soon as the standard becomes less volatile, although we have already written an 
implementation based on the Solaris-specific threads package. 

3.2.3  Object Access 

The Object Access module supports application access to Photon objects. Within the same address 
space, a Photon object may be accessed directly, otherwise, objects will be accessed through the 
medium of proxy objects. A proxy object is a local object that provides an interface to some remote 
object such that a client program may use the proxy just as it would the actual Photon object which it 
represents. Each proxy object belongs to a special proxy subclass of the Photon class which has the 
proxied object as a member. Although the proxy subclass will be generated automatically from the 
Photon class definition, the class designer will still have the opportunity to write special proxy 
methods and implement arbitrary caching and consistency policies between the proxy and the real 
object. 

Proxy objects can play a key role in obtaining acceptable performance in a high latency environment. 
Without proxy objects, a designer of an object interface can encounter a conflict between aesthetics 

16 



and communication efficiency. If invoking each method necessarily entails a remote procedure call, 
the object designer will be tempted to trade off ease of use and define unnatural methods that try to 
piggyback several "natural" methods into a single call. With proxy objects, a method invocation on a 
Photon object does not necessarily entail any communication. The object designer can create an 
aesthetic object interface, and use a proxy object to obtain an efficient implementation. 

An implementation technique similar to Photon's proxy objects has been applied in the new Windows 
NT operating system [C93]. Windows NT has an architecture based on the client-server model; 
applications run as clients of the operating system server. A performance problem with this approach 
is the cost of context switching. To get acceptable performance, Windows NT avoids contacting the 
server for every system call. System calls that do not require access to global data are handled in 
the application without contacting the operating system server. Data is also cached in applications so 
that some system calls can be processed without having to contact the operating system server. 
Photon provides proxy objects to avoid the latency of communicating with an object on every method 
invocation, exactly analogous to the way Windows NT avoids the latency of a context switch on every 
system call. The benefit of this approach is that a clean interface can be provided to the user without 
having to be concerned that each method invocation incurs a network latency cost. 

The non-application-specific code making up proxy objects is automatically generated from a 
definition supplied by the user. This function is carried out by the Interface Definition Language 
module. Proxy objects for Photon system objects are provided in a library. 

For some object implementations, the interface of the proxy object might differ from the interface of 
the actual underlying object. Such implementations have two interfaces, (1) the external interface 
presented to applications via the proxy object, and (2) the internal interface the Photon object 
presents to the proxy object. The internal interface (2) is hidden to application programmers. This 
might be convenient, for example, in a case where several method invocations on the proxy are 
piggybacked together in a single internal method invocation. The internal interface provides a method 
unlike any external method; the internal interface's method's signature accommodates passing all the 
arguments of the several piggybacked external methods at once. 

3.2.3.1   Prefetching 

As discussed in the Introduction, network bandwidth is dramatically improving, while small 
improvements in latency are being dwarfed by dramatic improvements in processor speed. In order 
for applications to achieve high performance in this environment, Photon needs to provide 
mechanisms that put the dramatically wider network bandwidth to effective use in order to ameliorate 
the high latency. One such mechanism is prefetching. Prefetching allows an application to guess 
what data will be required by its user in the future, and have that data move over the network to the 
application before it is needed. The application could guess wrong and request the transfer of 
unneeded data, but it will typically be faster to transfer data of questionable utility as long as some 
fraction of it can be used to immediately satisfy an application's request, rather than waiting until it is 
known exactly what is needed and incurring the cost of latency. Prefetching allows trading off the 
higher network bandwidth for decreased latency. Some of these issues are addressed in 
[TOUCH93]. 

Prefetching will only make sense in certain applications. If data is constantly being updated, then 
prefetched data might be invalid by the time the receiver tries to access it. The best use of 
prefetching is to retrieve data from a read-only data set, for example, a C2 application might want to 
prefetch cartographic information. 

Prefetching in Photon is done by calling a special method invocation stub specifically for prefetching 
in the application client. The special prefetching stub has only input arguments; output arguments are 

- 17 



omitted. The prefetching stub immediately returns. Since the application is just giving a hint to the 
system about what data might be needed in the future, no error indication is ever returned. Photon 
invokes the method and stores the result in a buffer. When a normal invocation of the same method 
with the same input argument values is made, the result stored in the buffer is used. 

One issue in the implementation of prefetching is the management of the buffer used to store 
prefetched data. The buffer must be large enough so that useful data is not bumped out before it is 
needed. The buffer manager must adaptively measure how much data is being aged out of the buffer 
before it is used, and adjust the buffer size and age limit upward when apparently beneficial. 
Similarly, the buffer manager must adjust the buffer size downward when that appears appropriate. 

Another issue in the implementation of prefetching is the provision for interrupting the transmission of 
large messages containing prefetched data. The transmission of normal method invocation request 
and reply messages takes priority over the transmission of prefetched data. If when transmitting a 
large message containing prefetched data, a normal message enters the queue to be transmitted, the 
transmission of the prefetched data should be interrupted, and the normal message transmitted. Then 
the transmission of the prefetched data should continue. 

3.2.3.2  Object and Process Migration 

Another approach to reducing latency is to minimize critical-path message traffic between remote 
hosts. Some gains can be had here through the use of globally claimable futures (described later). 
However, one situation with high overhead due to message traffic is where a client invokes many 
operations on a remote object which must be done consecutively because computation must be 
performed on the result of each operation before the next one can be invoked. In this case, globally 
claimable futures are not sufficient because of the computation performed between successive 
invocations. There are several ways to deal with this particular problem: 

1. Object replication 

Replicate the remote object on the local machine. This can be done by accessing the remote 
object through distributed shared memory. While some message traffic between the local and 
remote host will still be necessary to synchronize the state of the object, these need not be 
exchanged after every invocation. For instance, the client could lock the object, perform a 
hundred operations on the object, and unlock the object; only a couple of messages would 
need to be exchanged between local and remote hosts to synchronize the two versions of the 
object. Of course, in the meantime no other process would be able to access the object. 

2. Object migration 

Moving the object onto the local machine will also provide a savings in message traffic in this 
situation. Messages would only need to be used to transfer the state of the object to its new 
location. One advantage to this method over object replication as described above is that 
other processes would still be able to access the object while the client is using it. Of course, 
it would be necessary to provide a mechanism whereby the client could temporarily lock the 
object to the local host, in order to guarantee that the object would not be moved to some 
other location before the client is done with it. 

3. Process migration 

The above methods would not generally be appropriate when the remote object is tied to a 
particular host, such as objects providing a compute service or objects which provide an 
interface to a piece of hardware. In the case of a compute service, while it would be easy to 
replicate or move such an object, particularly if it had no state, doing so would defeat one of 

18 



the main purposes in having such a service, which is to distribute the computational load 
evenly across the available CPUs. In the case of a device interface object, the object could 
not be moved away from the host to which the device is attached and replicating the object 
would require very close synchronization and thus would not result in any savings in message 
traffic. 

Since it is not feasible to move the remote object to the client host, the only solution is to 
move the client code to the object. This can be done within the existing framework by 
creating an object with a method which performs the invocations on the remote object and 
the intervening computations. This object may then be moved to the remote site and 
executed there instead of on the client host. 

All of the above methods must address the problem of how objects' state and methods are to be 
distributed across multiple, heterogeneous hosts. Since object state will be in terms of Photon ADTs, 
transferring the state will only require the conversion of the ADTs to and from an appropriate 
transmissible form. The distribution of object methods, on the other hand, is a much thornier problem 
since code translation is generally much more expensive than data encoding. There are a number of 
approaches to the problem of moving object methods to remote hosts: 

1. Preinstall compiled code 

In this case, the code would have to be compiled and installed on all the hosts to which the 
object might ever need to be moved. This is efficient at runtime but requires foreknowledge of 
where the object might be moved. Since we would like the ability to move objects to a client 
host to reduce latency for some tasks, we would have to know all of the hosts on which 
clients could run in order to use this scheme. This would be overly restrictive on the 
application programmer and would require too much manual configuration of the user of the 
application. However, this scheme is probably the easiest to implement. 

2. Move and compile code on the fly 

The code for the objects methods could be transferred to the destination host and compiled 
on the fly. This method is merely an extension of the above one, since there is no reason 
that the code could not be compiled as part of the system configuration. The method is only 
practical if the code is known to be portable to the destination host environment and the host 
system is fast enough to compile the code in an acceptable amount of time. Even so, there is 
still likely to be a fairly large overhead involved in moving an objects methods and it this cost 
would have to be measured against the expected gain in terms of reduction of latency. 

3. Write code in interpreted language 

This scheme would allow us to forgo the cost of compilation, but the resulting code would 
probably not run as fast as comparable compiled code. Given our assumption that we will be 
more concerned about latency than CPU consumption as the technology advances, this 
seems a reasonable compromise. Of course, it would also be possible to provide a compiler 
for the language which can be used when it is known that the code will be used often 
enough to justify compiling it. Such compilation would not contribute to latency, since the code 
interpreter could be used while the compilation is running off-line. Although we would have to 
install an interpreter on every Photon host, this could be part of the regular Photon installation 
and would present no extra configuration work to the application developer or end-user. 

4. Code translation 

Finally, the compiled code of the object methods could be transferred to the remote host and 
translated  to  appropriate  code  for that  host's  environment.  This  approach  requires   no 

19 - 



interpreter but does require a code translator between every two different environments. A 
variant of this approach is to compile object methods to a universal low-level representation, 
which would require only one compiler and interpreter per environment. Either approach would 
require too much work for each new environment supported by Photon. 

Initially  in   Photon,  we  will  rely on  preinstalled  code,  and  later will  experiment  with  on-the-fly 
compilation and possibly a simple interpreted language. 

3.2.4   Global Futures 

Many techniques exist for allowing a single process to start and control several concurrently executing 
activities. These include multitasking, futures, and streams. Multitasking approaches include the 
concept of threads such as that implemented in Mach [RASHID86]. In multitasking systems, each 
thread may be blocked while waiting for a different remote request; when the request is finally 
satisfied, thread execution continues, guided by normal scheduling policy. Futures include the 
approach taken by Cronus [WALKER90]. Rather than blocking RPC requests until the value is 
returned, the request returns a future which can be claimed when the value is needed. A thread may 
have several pending futures, and may invoke requests that create more. Futures may be combined 
into a future set which can then be used to block the thread until one of the set's values has been 
received. Streams, such as those implemented in Mercury [LISKOV88], allow a client to submit a 
sequence of requests and then claim the replies in the same order as the requests were given. This 
allows client and server to execute in parallel. This range of approaches is generally adequate for 
distributed processing driven by point-to-point requests between a single client and many servers. 

The global future is an addition to the basic RPC/call stream model. In the plain future model, a caller 
may issue remote procedure calls to various servers and receive the results of these calls at a later 
time. The asynchrony inherent in the future mechanism allows the client to issue many calls before 
receiving the results of the first; this allows computation in the server to proceed in parallel with 
computation in the client since the client does not have to wait for results from one call before issuing 
a second call. Global futures extend this capability by allowing the client to issue calls to several 
servers, with output from a call executed by one server being transmitted directly to a second server. 
This forwarding of data allows computation in the server to proceed without the client being a 
bottleneck between them. The computation in the servers may also proceed in parallel. 

A future is a typed value. It has a globally unique ID. When the client directs the server to perform a 
computation, it issues an RPC, for example: 

ObjID.operation(input_param_list,   output_param_list) 

In a remote procedure call without global futures, only the values of the input parameters would be 
communicated to the server, and later the values of the output parameters would be sent back to the 
client by the server. Only then could the client supply the value received as an input parameter to 
another RPC call to a different server. 

By using global futures, the client can cause a result to be forwarded directly from one server to 
another without its passing through the client. The client does this by specifying the ID of a global 
future in place of one or more of the input or output parameters. When a future is supplied instead of 
an output parameter, it will usually specify a distribution list. The distribution list directs the server to 
send a copy of the output value to each of the destination hosts in the list as soon as the value is 
computed. When an input parameter is specified as a global future, the server waits for the value to 

- 20 



arrive, binds the value received to the parameter occupied by the future, and then proceeds with the 
operation requested. Since future IDs are allocated by the client without consulting the server, a client 
can set up a flow of values from one server to another with no waiting for intermediate results. As a 
result, the joint computation between the servers will complete as soon as possible. 

3.2.5   Distributed Shared Memory 

Distributed shared memory (DSM) is an emerging alternative to message passing for constructing 
distributed applications. It is more convenient for many applications to be able to communicate 
through data in DSM than to have to rely on message passing alone. For example, applications 
written to run on multiprocessors usually make use a shared memory model. DSM makes porting 
these applications to a distributed environment much more straightforward than it would be without it 
[WILSON92]. 

Since one of Photon's primary goals is to support a heterogeneous environment, Photon's DSM will 
be shared by platforms with different architectures. There is a concern that DSM might not be able to 
perform adequately in such an environment. However, there is some good evidence that 
heterogeneous DSM can be competitive in performance with homogeneous DSM systems [ZHOU90]. 

Photon divides the DSM space into segments, each segment containing an abstract data type (ADT); 
this is similar to the approach taken in Munin [BENNETT90]. Each segment is called a memory 
object. A popular alternative is to divide the DSM into fixed-size pages. There are several problems 
with this approach. First, in a heterogeneous environment, machines commonly have different page 
sizes, and therefore there is no obvious natural choice of page size for the DSM. Second, the data in 
a page is not necessarily related. Two threads can end up having to share a page, even though they 
do not in fact share any data. This "false sharing" can lead to thrashing, which can severely impair 
an application's performance. The data in a Photon memory object is the representation of an 
instance of an abstract data type; only threads sharing the same ADT will share the memory object. 
Thrashing might still occur, but only because too many threads are in contention over the same 
datum. 

As in Munin, each Photon memory object is assigned a memory type by the application. The memory 
type lets the application indicate to the system the style in which the memory object will be used, and 
therefore lets the system optimize its caching and update strategies for the memory object. One 
memory type is provided that will work for arbitrary patterns of access. Other memory types, adopted 
from Munin, are write-once (memory that is written when initialized but subsequently only read), 
write-many (memory that is written a lot by many different threads), result (write-many memory 
where the writes do not conflict), migratory (used by only a single thread at a time), 
producer-consumer (written by one thread, read by one or more others), and read-mostly (rarely 
written). The builders of Munin identified these memory types by studying actual applications, and 
then came up with a set of memory types that covered nearly all the observed cases, plus a general 
one that will work for all the rest. 

Each memory object contains a single ADT. The ADT can be constructed out of several other ADT's, 
all of which reside in the memory object. The ADT module is used by the DSM to convert the ADT in 
a memory object into a suitable representation. 

For synchronizing access to memory objects, the Photon DSM provides lock objects. The Photon 
DSM takes advantage of its knowledge of the holding and release of locks to optimize the 
propagation of updates. Photon uses the delayed update approach of Munin. This approach results in 
less communication than the popular approach of immediately invalidating all the copies of a memory 
object when some thread writes it, the approach taken in [ZHOU90], for example. 

21 



Photon DSM can either be temporary or persistent. Temporary DSM is used as a scratch pad for a 
computation being carried out by many threads in parallel, but is of no further use and vanishes once 
the threads complete. Persistent DSM survives beyond the lifetime of any given thread, and must be 
destroyed by explicit user action. Persistent DSM requires tolerance to machine and communication 
failures. Photon takes the approach that temporary DSM does not require tolerance to machine and 
communication failures, although these failures will be detected and the application notified that the 
DSM has failed. This allows the implementation of temporary DSM to have much less overhead than 
the implementation of persistent DSM. 

One memory object can contain a reference to another memory object. To permit the system to do 
prefetching, application programmers can annotate that a particular reference in a memory object is a 
"down pointer." By doing so, the application indicates to the system that if a thread accesses the 
memory object, it is likely to follow the "down pointers." Therefore the system can reduce latency by 
prefetching the memory objects that are the targets of the down pointers before they are actually 
referenced. This approach trades off bandwidth for latency, an opportunistic approach in the Photon 
environment of high bandwidth but slow latency. 

22 



Section 3.3   Photon Object Services Layer 

The Object Services layer is the top layer in the Photon architecture and provides the functionality 
upon which applications are written. This layer contains the following functional modules: Interface 
Definition Language, Language Veneers, Naming, Location/Binding, and Class/ADT Registration. 
(See Figure 3-1.) 

3.3.1 Interface Definition Language 

Distributed environments such as Cronus [WALKER90], DCE [SHIRLEY92], and CORBA commonly 
provide a language used by application programmers to describe the interface to a server. The server 
interface description is commonly used to generate RPC stubs and "boilerplate" code for the server. 
Likewise, Photon features a language to describe the interface of Photon objects, the Photon 
Interface Definition Language (IDL). The IDL is used to define classes. Classes are implemented in 
programs which act as servers for objects of the class, and are accessed by programs, known as 
clients. A program may be both a client and a server, even for the same type of object. 

The designer of a Photon application designs one more classes by writing class descriptions in the 
Photon Interface Definition Language. A file containing this description is processed by the Photon 
IDL processor. It may be processed only for syntax checking, or, assuming it finds no errors, to 
create a class descriptor, which is itself a Photon object. Class descriptors may be stored in individual 
files or registered in a Photon Class database. Code generators for each language veneer will use 
the class descriptors as specifications from which to produce the necessary interface modules and 
templates of the implementation modules for that language. 

The Photon IDL is based on the CORBA Interface Definition Language. 

3.3.2 Language Veneers 

The language veneer is a service of the Photon Object Services layer. It is integrated with the 
language processor being used, either in the form of additional libraries and definitions, or as a 
preprocessor for Photon programs. It draws upon the Photon Interface Definition Language and 
Class/ADT Registration modules at the same layer to permit use of previously defined classes and 
data definitions. There exists a separate language veneer for each language supported under Photon. 

One of the major goals of the IHPDS project is to design a programming environment which is 
convenient and natural to its users, whatever programming language is being used. Since different 
programming languages such as C++, Lisp, and Ada encourage very different programming styles 
and paradigms, we would like for Photon to fit the style of the language being used as closely as 
possible. For this reason, rather than provide a single, monolithic API (Application Program Interface), 
the same in all languages, we will provide a different language veneer for every supported language. 
Eventually, we plan to support C, C++, and Ada. The C veneer could probably also be used from 
other unsupported languages, provided that the system linking conventions allow it. Our initial efforts 
were concentrated on a C++ language veneer. We chose C++ to start with because that language's 
features will allow us to hide many of the complex details of distributed programming and present 
natural abstractions to the Photon user without having to extend the language. For instance, the 
ability to define parameterized types using C++ templates provides a convenient means for 
implementing "smart" pointers to Photon objects which can hide binding details. The techniques 

23 



described below will be applicable to other language veneers to the degree that other languages 
provide features comparable or more powerful than those provided in C++. 

Each language veneer has two main components: (1) an API for that language providing access to 
common Photon services, such as the generation of unique numbers (UIDs), object location and 
binding, etc.; and (2) code generators which produce declarations and code templates for 
user-defined Photon ADTs and classes. The language veneer will not preclude the Photon user from 
making use of non-Photon software packages and libraries. 

In developing a C++ veneer we had a number of design goals (not all of which will applicable to 
other languages). These are: 

3.3.2.1 Avoid "namespace pollution" 

The definition of many external global functions and variables often results in clashes with other 
software packages with similarly named entities. In C++, this problem can be partly alleviated by 
restricting external global symbols to class and class variable names, thus reducing the number of 
symbols which could clash. Global functions can be replaced with static member functions of a global 
class. For instance, a function returning the current version number of the local Photon installation 
would be defined as a static member function of the Photon class as opposed to a global function: 

Photon::getVersion(SversionString) ; // static member function 
::GetPhotonVersion(&versionString) ; // global function 

Similarly, constants specific to a particular package within Photon can be made members of the class 
providing the interface to the package rather than defined externally: 

class PhSomePackage { 
public: 
enum { MAX_VALUE = 42; } ; 

} 
if    (i   <   PhSomePackage::MAX_VALUE)    ... 

In order to lessen the chance that built-in Photon class names will clash with non-Photon class 
names, all classes provided by Photon begin with the prefix "Ph"; for instance, the Photon UID class 
is named PhUid. The class "Photon" is used to package static member functions and variables as 
shown above. 

Note that other than through the use of preprocessor macros, which is a dangerous practice, there is 
no way to resolve a clash between identical class names without manually changing them. Since, we 
are in essence using C++ classes as packages, this problem is no different than that of duplicate 
package names in Ada or duplicate module names in Modula-3. 

3.3.2.2 Hide implementation details through data encapsulation 

C++ allows us to declare some class members as private and therefore inaccessible outside the class 
(and its designated friends) and other members as public. We use this ability to "hide" the 
implementation details of Photon datatypes. For example, the users of Photon UIDs need not know 
the internal representation or composition of these datatypes, but only need to be able to generate 
them and compare them to one another. 

- 24 



By not allowing programmers to access data members directly, but instead only allowing access via 
the methods which are declared as public, the internal representation can be changed in a later 
version without requiring users to change any code, although recompilation would be necessary. For 
this reason, we avoid public data members in all built-in Photon datatypes. 

3.3.2.3 Use "orthodox canonical form" whenever possible 

In general we adhere to "orthodox canonical class form" [COPLIEN]. This form is needed for any 
class whose objects will need to be assigned or passed by value or whose destructor performs any 
significant work, and is generally recommended for all nontrivial classes. The form requires the explicit 
public definition of: 

o a default constructor    ( x::X()   ) 

o a copy constructor        (  x: :x(const  &x)   ) 

o an assignment operator   (  x&  operator= (const  &x)   ) 

o a destructor ( X: .-~xo   ) 

There may be some Photon classes that will need to deviate from this form, but only for an explicit 
reason. For instance, it might be desirable to prevent the user from instantiating an object without 
specifying an argument for the constructor, in which case the default constructor would be declared 
private instead of public. 

3.3.2.4 Minimize need for programmer to explicitly code routine tasks 

The goal is to make routine tasks, such as memory allocation and deallocation, ADT encoding and 
decoding, and message packing and unpacking, as painless as possible. C++ constructors and 
destructors are used to automatically allocate and deallocate memory needed by various Photon 
objects. Constructors are used to allow Photon ADTs to initialize themselves from their encoded 
representation. Operator overloading is used to present a natural interface to the user; for instance, 
Photon integer ADTs have the same operators defined for them as standard C++ integers. 

Abstract base classes are used to specify standard interfaces to be inherited by Photon ADTs, 
Photon objects, and other Photon constructs. When invoking methods from a base class, it is not 
necessary to know the particular subclass of the objects. For example, the following code accepts an 
array of arbitrary ADTs and packs them in encoded form into a message: 

PhMessage* packArray(PhAdtS adts[], int nadts) 
{ 
PhMessage *message = new PhMessage ; for (int i=0; i<nadts; i++) 
message->appendAdt(adts[i]) ; return message ; 

} 

C++ mechanisms may be used to define a "smart" pointer for object binding. Let us assume that we 
want to define a simple Photon class, named Too" with a single method "bar". The class 
specification would be done in a Photon-specific definition language, and after this is parsed into an 
internal form, the C++ code generator would produce a number of C++ declarations. The public 
portion of the main Foo class might look as follows: 

- 25 



class Foo : virtual public PhObject { 
public: 
// Structors 
virtual ~Foo() {( ;// destructor 

// Foo methods 
virtual void bar() ; 

// Binding methods 
static Foo* bind(const PhOidS id) ; 
Foo* rebind(const PhOidS id) ; 

}; 

Note that Foo will inherit some standard methods and data members (e.g., its object id) from the 
abstract Photon object class PhObject. The binding methods will be used by the binding template 
shown below. Since we want to hide the distinction between the use of Foo objects in the local 
address space and those accessed through proxies, the Foo class will only be an abstract base 
class, the real implementation of the class will be called MasterFoo and the proxy version of the class 
will be called ProxyFoo, both of which will inherit from the main Foo class: 

class MasterFoo : public Foo, public PhMasterObject { 
// Structors 

MasterFoo() ; // default constructor 
MasterFoo(const PhOidS id) : PhObject(id) ; // init object id 
-MasterFoo() ; // destructor 

// Operators 
void bar() { cout « "bar" « endl; ); 

}; 

class ProxyFoo : public Foo, public PhProxyObject { 
// Structors ProxyFoo () ; 
ProxyFoo(const PhOid Sid) ; 
-ProxyFoo() ; 

// Operators 
void bar() ; // Will invoke bar() on MasterFoo object remotely 

}; 

Note that multiple inheritance is used so that each class can inherit a common interface from Foo 
and also inherit members specific to Master and Proxy objects respectively. Both classes have a 
constructor which sets the object id inherited from PhObject. The default constructor for PhObject 
could be made to either set the object id to a null value or to cause a new id to be generated when 
the object is constructed. Given this scheme a pointer to a Foo object could refer to either a 
MasterFoo or a ProxyFoo and allow them to be used interchangeably: 

MasterFoo mfoo = id ; // create foo with specified object id 
ProxyFoo pfoo = id ; // create proxy foo for given object id 
Foo * mfoo_ptr = &mfoo, 
pfoo_ptr = Spfoo ; mfoo_ptr->bar() ; // invoke bar() method directly 
pfoo_ptr->bar() ; // invoke bar() method indirectly through proxy 

- 26 



Of course, this would still require the programmer to explicitly construct the proxy. This can be 
avoided using a C++ template class: 

template<class obj> 
class PhBind { 
private: 
obj* _ptr ; 

public: 
// Structors 
PhBind() : _ptr(0) { } ; 
PhBind(const PhOid &id) { bind(id); }; 
PhBind(const PhBind<obj>& b) : _ptr(b._ptr) {} ; 
-PhBind() {} ; 

// Operators 
obj* operator->() { return _ptr; }; 

// Methods 
void bind(const PhOid Sid) { _ptr = obj::bind(id); ); 

This template class hides the details of binding from the user through the use of a "smart"' pointer. 
Note that it relies on the presence of the 'bind' method in the main Foo class to return an 
appropriately typed pointer. Although the bind method is part of the Foo class, the code generator will 
take care of the implementation, and the Photon class designer need not be troubled with it. Users of 
the template can use it exactly as they would use a pointer to a Foo object but don't have to be 
cognizant of the mechanisms used to bind it: 

PhBind<Foo> foo(id) ; // Bind "foo" to object with given id 
foo->bar() ; //invoke bar() method on object 

The object referred to by 'id' might be a local MasterFoo object or a ProxyFoo object constructed on 
the fly and bound to a remote MasterFoo object through an appropriate communications channel, but 
the user need not be aware of this. 

3.3.3  Naming 

The ability to name an object is an important part of Photon. Although every Photon object has an 
object id, 01 Ds are system generated bit strings with no external meaning other than as a unique 
identifier for the object and thus convey little information to potential users of the object. Naming is a 
means of associating an object with an identifier which may be more meaningful to a human or 
organization. 

Recall the dichotomy in the Unix(tm) file system between file names and inode numbers. The same 
dichotomy exists between Photon Object Names and Photon 01 Ds. The Photon Object Naming 
system is a catalog which given a name string (or other meaningful specifier) returns an object id. 
The OID may then be used to obtain access to the object. 

The Photon Object Naming System, hereinafter called the catalog, is a system built strictly out of 
Photon objects. That is, the catalog is layered above most of the parts of Photon that implement 
Photon objects. The catalog is a loose hierarchy of Photon directory objects. The directory object 

27 - 



implements a lookup method. Given a directory object D, and a typed data item I (i.e. I is an instance 
of some Photon abstract type), P[l] (or P->lookup(l) if you prefer this notation) yields the 01D of 
another Photon object. The type of the index argument I is by default a text string. However 
specialized directories may take other types of arguments to their lookup method. 

Applying the lookup method to a directory object may return the OID of another directory object, thus 
enabling the construction of a hierarchical catalog. Photon does not require a single universal 
catalog. Starting with any directory as a "root", a hierarchical catalog will be seen. Just as it is 
expected that the catalog will be filled with meaningful entries by its users in order for it to be useful, 
it is expected that reasonable choices will be made for "root" directories. In particular, one Photon 
directory on each local system leads to a reasonable, standard organization for a catalog. An 
alternative might be one catalog "root" per workgroup, or per company, etc. Since at any point, a 
directory entry might point to another directory which might be remote to the "local" catalog, the 
hierarchical structure is merely a convenience. 

The Photon directory object must of course implement additional methods to be generally useful. It 
should be possible for an application (at least some applications) to traverse a directory, to display all 
of the index entries. Traversal may not make sense in all cases (consider an Internet automounter 
implemented as a directory), but is generally useful. 

One final point: users often think of owner id, access protection, size and date information as being 
part of the function of the directory, however, it need not be. In Unix(tm), this information comes from 
the inode, not from the directory. Similarly, in Photon, this sort of information would be part of the 
stable store that holds persistent objects (including files). 

3.3.4 Location/Binding 

Location/Binding is responsible for mapping a Photon object identifier into an object instance. Photon 
provides location independent invocation, like Cronus [WALKER90]. In Photon, however, the 
application builder has much more control over the location process than in Cronus. In Cronus, 
location is performed by the Cronus kernel in a fashion completely transparent to applications. 
Although it is often desirable for the system to take on all the burden of iocation, some applications 
might find it useful to be able to specify a location policy. Cronus has a hardwired policy of using the 
first object server found. Such a policy would result in a nearby PC being chosen over a distant 
supercomputer for a number crunching operation. Photon allows the application writer to replace the 
system's location policy with an application-specific one. 

Photon provides support for application-specific location policies by placing the location function in a 
shared library rather than a separate ipc-kernel process. To customize location, the application writer 
just provides custom implementations of routines in the shared library that control location. 

3.3.5 Photon ADT and Class Registration 

Both Photon ADTs and classes will have descriptor objects that may be stored in individual files and 
used by the language veneer code generators to create appropriate interface and implementation 
code. For initial development and prototyping this scheme is sufficient since all of the files can be 
generated and used locally without needing to use anything more than the code generators, 
compilers, and linkers for the current environment. However, when an ADT package or Photon class 
is ready to be used in multiple applications or by multiple developers, it is highly desirable to have 
the means to publically register and distribute the package or class. Photon will provide this means in 
an ADT and class registration database. 

28 



The type registration database will provide a number of basic services related to the use of ADTs and 
classes: 

Object storage and retrieval 

The principal service provided by the database, will be the ability to register ADT packages 
and Photon classes with server for subsequent retrieval. These will be registered by insertion 
of the descriptor object into the database. The database will also be able to manage source 
code generated for various language veneers and shared object code which implement ADT 
and class methods. The database will be distributed across the machines within a single 
domain. 

Name/id mapping 

The database will support operations to translate between names and unique type identifiers. 
Given a class identifier, it will be able to provide the class name. Given a package name, it 
will be able to list the names and identifiers of ADTs contained in it. It will also be able to 
provide dependency information where appropriate; given a class name or identifier, it will be 
able to list parent and descendant classes and which ADT packages it requires. 

Name reservation 

The database will allow programmers to reserve Photon class and ADT package and names 
and identifiers for future use, even before a definition is present. This will help developers 
avoid name clashes by allowing them to publish their intentions in advance. 

Note that although the type registration database will have a well-defined interface, it will not 
necessarily be implemented in a single server process, as is the case with the Cronus Typedef 
Manager. 

29 



Section 3.4   Inter-Layer Modules 

Two modules in the Photon architecture have functionality that is provided in every layer of the 
architecture, the Security and Monitoring modules. 

3.4.1 Security 

Photon will use an adaptation of the popular approach first described in [NEEDHAM78], which is 
based on message encryption and having a trusted authentication service. Other systems, for 
example [SATYAN89] and [BIRRELL85], were built without authentication and then had it fitted in 
later. Photon's basic initial architecture includes authentication, which should result in an overall 
cleaner design. 

To lower the impact of network latency on establishing a communication path to a Photon object, the 
naming, location, binding, and authentication functions of Photon will be highly integrated. Other 
systems separate the binding and authentication function into separate servers. This means one 
round trip is needed to resolve the server's name, and another is required to obtain the necessary 
authentication information. By integrating these services, name resolution and authentication can be 
done in a single round trip. This approach to bundling naming and authentication together was also 
taken by [BIRRELL85]. 

3.4.2 Monitoring 

Monitoring helps support the debugging and testing of distributed applications [JOYCE87], and can be 
used to conduct performance evaluation studies. Monitoring data can be used in real-time by 
adaptive algorithms to observe and adjust to a changing environment. Monitoring data can be used to 
automatically trigger administrative actions. 

Many aspects of operation in each layer of the Photon architecture could be monitored. In the top 
layer, for example, usage patterns of Photon objects could be monitored. A record could be kept of 
what user invoked which method at what time. At the bottom layer, communications performance 
could be monitored. In the middle layer, contention in distributed shared memory could be monitored. 
[OSF DCE RFC 32] presents one version of what one might monitor in a distributed system. 
Activities in applications as well as within the Photon system itself could be monitored as well, to 
support testing and debugging. The monitoring data in this case can be application-specific. 

The Photon architecture includes a Photon monitoring object that collects monitoring data, and replies 
to queries against its database of collected data. Modules report data concerning their activities to 
the Photon monitoring object. Applications can also report application-specific activities to the Photon 
monitoring object. Data is retrieved from the monitoring object by sending it a query. Applications 
that want to observe ongoing system activity can send the monitoring object a "live" query. The 
monitoring object then sends back any newly arriving data that satisfies the query until the application 
turns off the live query. A Photon sequence will be used to pass the monitoring data to the 
application. The elements of a sequence are filled in incrementally; the elements arrive at the receiver 
as they are filled in. The monitoring object can also support automatic administration and control 
activities. A query and a control action can be submitted to the monitoring object such that whenever 
the query is satisfied, the control action is executed. 

Some adaptive applications might require the promptest possible reporting of monitoring data. For 
these applications, the latency of reporting monitoring data first to the monitoring object, and only 

30 



then to the application, might be unacceptable. Such applications will have the ability to request that 
modules directly send monitoring data to them, as well as the monitoring object. This approach trades 
off bandwidth for latency. The application receiving the monitoring data will have to examine and 
discard irrelevant monitoring data sent by the module. Having the sending module filter out monitoring 
data not of interest to the receiver might cause the monitored module to change its behavior when 
monitored significantly due to the increased computational load. Therefore some bandwidth will be 
wasted sending unneeded monitoring data, but this will be an increasingly worthwhile tradeoff as the 
cost of bandwidth decreases with respect to latency. 

3.4.3   Administrative Domains 

It is expected that Photon will not be used entirely within a single organization and that no one 
organization would be able to take responsibility for the administration of all Photon hosts. The 
configuration of Photon and user-provided services should be left to the local system administrator. 
To this end, Photon will group hosts into centrally administered "domains", such that every Photon 
host shall belong to exactly one domain. Hosts within the same Photon domain should be 
administered by the group or organization to which the domain is assigned, but need not actually be 
on the same local area network. Photon domains are roughly equivalent to "clusters" in Cronus. 

Before describing domains in more detail, we should first speak a little about the Photon hosts of 
which they are comprised. A Photon host is a computer upon which Photon has been installed and 
which may support Photon client or server code. Every Photon host is identified by a unique host 
identifier which is assigned when Photon is installed. Photon will provide a service which will translate 
between Photon host ids and host names or system-specific host address (e.g., an Internet address), 
but for the purpose of communications within the Photon environment, Photon host ids will be 
sufficient. In Cronus, host identifiers or HOSTNUMs are implemented as Internet addresses and suffer 
from the resulting lack of generality: hosts with multiple addresses cannot be supported cleanly, 
changing the Internet address of a host invalidates existing HOSTNUMs, and there is no support for 
non-Internet addressing. Photon host ids, on the other hand, will have multiple internal representation 
types to support different addressing protocols, multi-ported hosts, and aliasing. Since some potential 
uses of host ids may require many bytes and others few and because we cannot anticipate in 
advance what the maximum space will be needed for all uses of of host ids, Photon host ids will 
have variable length. Host ids will not contain the id of the domain to which the host belongs, but all 
Photon hosts will be able to identify their own domain. 

Hosts within the same Photon domain will share common service providers for Photon services such 
as naming, authentication, and type registration. Clients which need to make use of such services for 
a remote domain will need to access the service provider for that domain. How related services in 
different domains communicate with each other will depend upon the service. For instance, 
authentication services in different domains will probably need to be explicitly introduced and 
authenticated to each other, but once that is done will be able to freely obtain authentication 
information from each other. The type registration service, on the other hand, is likely to require the 
explicit of transfer of type information to and from remote domains. 

Domains will be identified by unique identifiers which will be distributed along with the Photon 
installation files. Domain identifiers will be variable length in order to support further partitioning into 
subdomains for larger organizations. Photon will provide the means for users to obtain additional 
domain identifiers should they be needed. 

31 



Chapter 4.   Resource Management in the Photon System 

Photon is a distributed computing environment that supports high-performance computing. Photon 
has many features that allow an application to adapt over a wide range of system characteristics, 
such as global futures, shared memory, and proxy objects. Photon also accumulates and integrates a 
priori knowledge of an application's behavior in order to manage resources. Photon translates this 
knowledge into specifications for network resource allocation, such as a flow specification. 

4.1   Introduction 

A goal of Photon is to allow applications to adapt over a wide range of system characteristics. For 
example, a Photon application should run effectively on a shared memory multi-processor, or 
supercomputers connect together over a gigabit network. Photon should shield application users from 
resource management issues and help application developers to make adaptive systems. 

Many specialized mechanisms have been invented to address resource management issues for 
systems with specific characteristics. A general solution to the resource management problem would 
be difficult to find, because even its sub-problems are hard optimization problems. Photon will 
address the general resource management problem by offering a framework for choosing specialized 
mechanisms based on a system's current characteristics. Hence, Photon must be aware of the 
system's characteristics and mechanisms that have been implemented to handle special cases. 

Many systems are unaware of their operating environment; i.e. they make resource management 
decisions using no a priori knowledge. The claim is that collecting and maintaining knowledge about 
their operating environment is not worth the trouble. For example, in BSD Unix the paging algorithm 
dynamically determines the working-set size, which works fine for most programs. But for a program 
that inherently needs a large working set, this fact has to be rediscovered every time the program is 
run, and there is no mechanism for remembering this characteristic of the program. 

On the other hand, large production systems tend to spend a considerable effort in measuring and 
analyzing system characteristics. The claim is that the system's size and relatively stable environment 
makes resource optimization profitable. For example, a whole industry supports "Capacity 
Management" of IBM mainframes. Some claim that a major reason why industry has not embraced 
client/server computing is the lack of support for system issues. 

The characteristics of physical resources are also changing. Photon needs to handle the relatively 
high latency environment of future gigabit networks. But interfacing to these network will require 
detailed specification of traffic patterns, such as expected bandwidth and burst length. In order to 
use these resources effectively, Photon must translate an application's a priori knowledge of its usage 
patterns into precise communication requirements. 

Photon must accumulate and integrate a priori knowledge of an application's system behavior. This 
knowledge is available at many different times, and from many different players, during the system 
development cycle. Photon offers hooks to capture this information at the appropriate time and place. 
Photon makes explicit the separation between the function of a distributed object and its realization 
on a set of networked resources. 

32 



This chapter introduces a terminology for analyzing the resource management process in Photon. 
Section 2 of this chapter introduces the general resource management process and show that several 
different types of information must be collected and analyzed. Section 3 of this chapter introduces 
the general system development process and shows that resource management information is 
available at different times. Section 4 of this chapter describes Photon's resource management 
process and shows the mechanism that Photon uses to collect, analyze and act upon resource 
management information. 

4.2  A Resource Management Perspective of a System 

A distributed application does not become a system until it is deployed on a set of networked 
computers. An application is coded to perform a specific function, but how well the application 
performs its function depends on how it consumes resources. For example, one would expect a 
program to run faster on a supercomputer than on a personal computer, but in some special cases 
this expected behavior may not be realized. Resource management is a framework in which to 
analyze system issues in isolation from functional issues. 

Separating an application's functional properties from its system properties allows the distributed 
system to adapt to changes in resources or requirements. The object-oriented paradigm is a 
functional description of the application's data and processing, and does not describe system 
behavior. Photon uses resource management techniques to augment the object-oriented paradigm in 
order to handle system issues. 

The same applications can have different system properties depending on how the resources are 
allocated to the application's functionality. System properties are requirements that resource 
management must meet. Examples of system properties are availability, performance, security, and 
cost. Resource management can change the system characteristics in order to fulfill desired system 
properties. Examples of system characteristics are resources, usage patterns, and resource allocation 
mechanisms. 

Figure 4-1 shows the resource management view of system characteristics and properties. Resource 
management concentrates on system issues in isolation from the functionality of the application. 
System characteristics are the parameters that resource management can change, while system 
properties are the required behavior for the system. User traffic makes requests of physical 
resources in accordance with an resource allocation scheme. As a consequence of these system 
characteristics, the system has certain system properties. The resource consumption properties are 
concerned with the amount of resources consumed and their cost. The responsiveness properties 
are concerned with the quality of service the user received, such as availability, delay, throughput, 
and security.   In the Photon context, these parameters are: 

Usage Pattern: the workload on the system. Since Photon is an object-oriented system, workload is 
in terms of method invocations. The workload can be characterized by the time and frequency of 
method invocation among object clients and servers. These interactions can also be marked with 
their priority. Photon must be able to predict the expected workload which may include measuring 
past workload in order to predict the future. 

Resources: physical components that have the capacity to do work. Photon must manage both the 
host resources and the network resources. The host resources include CPU, memory, disk, and 
specialized hardware, such as signal processing units. The network resources include managing 
connections between hosts. Photon must know which resources are available, the topology of how 
they are interconnected, and their current status. 

- 33 



THE SYSTEM" 

Users 

Managment 

Usage Patterns 
Flows 
Priority 
Arrival Resource Allocation 

Flow control 
Policies 
Scheduling 

Resources 
Reliability 
Topology 

Responsiveness 
Availability 
Delay 
Throughput 
Security 

Resource Consumption 
Utilization 
Retries 
Cost 

System Characteristics    System Properties 

Figure 4-1:   Resource management view of system characteristics and properties. 

Resource Allocation: the algorithms used to assign work to workers. Photon supports run-time 
resource allocation. Photon has hooks for assigning resources when objects are created, connected, 
and used. Resource allocation algorithms can be fairly complicated and special purpose. Photon 
must have models of the expected system properties of an algorithm for a given usage pattern and 
resources. 

Responsiveness: a catch-all term for how well a system performs its function. Traditionally, 
responsiveness has been expressed in terms of fault-tolerance, performance, timeliness, and security. 
Tom Lawrence has proposed that responsiveness can be reduce to a basis vector of Accuracy, 
Precision, and Timeliness [LAWRENCE]. Photon supports responsiveness at the level of objects. 
Photon accepts responsiveness requirements for interacting with objects, and verifies the actual 
responsiveness that it supplied. 

Resource Consumption: measures the amount of resources a system consumes in order to perform 
its function. Photon keeps track of resource consumption for access control and billing reasons. 
User or applications might have rights to use only certain resources, and resources should not be 
overloaded, hence Photon must regulate the work flow. 

To clarify these terms, here is an example. A mapping application expects to look up coordinates 
once a second; this is a usage pattern. The map object is stored on two servers, one locally and one 
remotely; this is a resource topology. The application uses the local server unless there is a failure; 
this is a resource allocation policy. The local server can handle two lookups a minute; this is a 
resource capacity. The application will use 50% of the server's capacity; this is its resource 
consumption. The applications has two sources for the map objects, so the interaction has high 
availability; this is responsiveness. 

34 



4.3  Overview of Resource Management Problems 

The general problem of managing resources is intractable. The pragmatic solution is to break the 
general problem into a series of sub-problems. But even these sub-problems are typically hard 
optimization problems for which special case solutions are used. These sub-problem solutions 
usually assume that most of the system characteristics are fixed, and consider changes in only one 
variable. Thus, sub-problem solutions can be categorized into three groups depending on which 
system characteristic is considered variable (Figure 4-2). 

The frequency with which system characteristics change determines the order in which subproblems 
should be solved. The slower changing characteristics can be handled with a longer time horizon 
than quickly changing characteristics. For example, in an office environment the number of 
workstations changes more slowly than the frequency applications are run on them. Hence there 
may be a yearly purchase of new office equipment whereas the application usage changes daily. 

Solving a resource management problem depends on detailed knowledge and heuristics about the 
specific type of problem. Photon cannot supply one solution for all types of problems. Instead, 
Photon helps the system designer make specialized solutions for the key problems in their system. 
Photon provides several opportunities, or "times," when resource allocation can be performed. 
Photon mechanisms try to get the right information, to the right place, at the right time. Photon offers 
default resource management services, but they can be over-ridden by the object implementation. 
The following sections give example resource management problems and how Photon could support 
them. 

4.3.1   Minimize Resources Problem 

The minimize resource problem finds an inexpensive set of resources that meet responsiveness and 

Minimize Resources 

Fixed Usage Pattern and Allocation Mechanisms 
Minimize Resources for Responsiveness Requirements 
Examples: Network Design, Server Placement 

Adaptive Allocation Mechanisms 

Expected Usage and Expected Resources 
Choose Allocation Mechanism to meet 

Responsiveness Requirements 
Examples: Policy Routing, Compression 

u 
R 

u 

R 
C 

R 
C 

Regulate Usage 
Fixed Resources and Allocation Mechanisms 
Adjust Usage to meet Utilization Requirements 
Examples: Usage Scheduling, Flow Control 

U 
R-*l 

R 
C 

Figure 4-2:   In order to make resource management problems tractable, most 
system characteristics are assumed constant and only one characteristic is changed. 

35 



utilization goals. The problem assumes fixed usage patterns and resource allocation mechanisms. 
The following are examples of the problem: 

• Network Design Problem: An inexpensive network topology must be designed that can 
handle an expected traffic load while meeting responsiveness goals. The user traffic is 
defined in terms of transaction flow between sites and the responsiveness goals are in terms 
of transaction delay and throughput. The problem is to choose where to place switches and 
multiplexors, and how much bandwidth should be allocated between sites. Additional 
knowledge is necessary, such as the cost of switches, communication tariffs between sites, 
and how transactions map into communications load. 

• Server Placement Problem: Replicated servers must be placed around the network such 
that they give adequate service, but do not consume very much network bandwidth. The 
location of the servers depend on the location of the users and how much traffic they 
generate. Also, backup servers must be defined which have enough capacity to still give 
adequate service in the case of failure. 

Photon supports minimizing resources when objects are created, i.e. at object instantiation time. 
When an object is created, resources must be allocated to store the object's persistent state. The 
resources allocated depend on the object consumers' expected usage patterns and their 
responsiveness requirements.  This problem is similar to the server placement problem. 

Photon maintains expected usage patterns for objects and interfaces for specifying responsiveness 
requirements. In addition, Photon will measure the actual usage patterns and responsiveness to aid 
in determining future expectations. 

4.3.2  Adaptive Allocation Mechanism Problem 

This problem changes allocation mechanisms dynamically to compensate for a specific set of system 
characteristics. The new mechanism is customized for the expected usage pattern, available 
resources, and responsiveness requirements. The mechanisms take the form of "hard-coded" 
algorithms that are used on the critical path during run-time. Hence, the mechanisms tend to be 
efficient and simple, but tend to have only a small scope for which they are appropriate.. The 
following are some examples of adaptive allocation mechanisms: 

• Policy Routing: A path through the Internet must be chosen that meets a set of constraints 
imposed by the user. The current set of network resources are used and the constraints are 
both the expected usage pattern and the system properties. A policy-based route can be 
used until the system changes and then a new route must be constructed. 

• Compression: A form of compression to be used between two hosts must be chosen from a 
set of possibilities. Resource constraints exist in the form of specialized hardware, network 
bandwidth, and CPU capacity. The content of the traffic also must be considered. For 
example, a text compression algorithm may actually expand binary speech data. The 
compression choice can be used until the system changes. 

Photon supports adaptive allocation mechanisms when applications connect to objects, i.e. at 
activation time. When an application starts to use a distributed object, many decisions have to be 
made concerning which resources to use, and the run-time policies for interacting with the object. 
The choice of resources and policies to use depends on the expected usage pattern and the desired 
system properties. 

36 



Photon offers a special time, object activation time, for specifying requirements, and for setting up the 
resources and run-time policies. In addition, Photon will measure the actual usage and system 
properties to aid in determining future expectations. 

4.3.3  Regulate Usage Problem 

The regulate usage problem changes the workload characteristics so that resources will not be 
overloaded. The problem assumes fixed resources and allocation mechanisms, and must maintain a 
set of system properties.   The following are examples: 

• Scheduling: A task must be done by a certain time and each subtask demands specific 
resources. Scheduling determines an ordering for doing the subtasks that minimizes the time 
to complete the task. The problem is to resolve conflicts when subtasks need the same 
resources. 

• Flow Control: Work is arriving faster then the resources can handle and there is no place to 
store waiting tasks. Flow control throttles the work generating process to a rate that matches 
the resource capacity. 

Photon regulates workload when an application calls an object's method, i.e. at invocation time. 
Photon checks the state of the resources that implement the method, and uses a run-time policy to 
determine if the method should block. If the method blocks, the application can not generate any 
more traffic.   Thus, the workload is regulated at its source. 

Photon maintains information concerning the dynamic state of resources. This information will be 
collected as applications interact with resources. For example, network utilization can be determined 
by looking at transport-layer status. 

4.4  Overview of the System Development Process 

A system development model captures the evolution of a system over time, and the information flow 
between players. In the terminology of this chapter a system includes the application code, the 
resources used to run the application, and the people who maintain the application. This broad view 
is important, because systems are not static; they evolve over a long period of time. 

As a system evolves, Photon captures general resource management information and continually 
refines it for specific contexts. This process of dynamic configuration makes Photon's applications 
both economical and powerful. A major goal of Photon is having the same application code run 
efficient on radically different sets of resources. 

A taxonomy for resource management information explains who specifies what, and most 
importantly, when. As the system evolves, knowledge about system characteristics and requirements 
of system properties becomes more precise. For example, when the application is being 
implemented, the programmers have a vague understanding of how the system will be used. They 
make implicit optimizations based on these assumptions. Photon offers mechanisms for making these 
assumptions explicit and passing them on to later stages of system development. These earlier 
assumptions become the defaults for later decisions, but can be overridden. 

Figure 4-3 is a time line of the evolution of objects, resources, and applications. The "times" are 
time horizons when decisions are made. Early on, very few decisions have been made and there is 
a wide latitude of possible choices. But in later times, many decisions have been made, and there 
are many constraints on remaining choices. Decisions also depend on constraints from other parts of 

37 



Design     Registration     Instantiation    Activation      invocation 

Object      \* Time 

Code Compile Install Run Close 
—^——— ——i——— ——^———        » 

Application ^^^~ Time 

Deployment     Configuration    Scheduling    Allocation        Use 

Resource Time 
* Example Dependencies 

Figure 4-3:   Evolution of objects, resources, and applications. 

the system. For example, an application cannot be installed on a resource before the resource is 
deployed. Resource management information is available at different times, at different places, and 
from different people. The system development model captures the evolution of a system over time 
and the information flow among the players. 

The rest of this chapter will concentrate on the run-time evolution of Photon objects: i.e. when 
objects are coded, created, and used. The following is a brief description of the important times in the 
evolution of objects. 

• Design Time is when a programmer designs and codes an object class. The object 
developer defines the object interface using the Photon Interface Description Language (IDL). 
Besides specifying the functional interface to the object, the IDL can specify default resource 
management information. The object designer also defines the resource management 
granularity of the object, which involves partitioning the persistent state; defining invocation 
and activation policies; and coding alternative method implementations. Design time decisions 
have a broad scope; they effect all possible instances and all possible users. 

• Instantiation Time is when an application creates an instance of the object. Resources are 
allocated to maintain the object's persistent state. The choice of which resources to use to 
maintain the state is based on the expected usage pattern of the object's consumers, and 
the desired system properties, such as replication for high availability. Photon's distributed 
shared memory is the principle mechanism for creating an object's persistent state. 
Instantiation time decisions begin to narrow in scope, as they pertain to a specific instance, 
but apply to all of its users. 

• Activation Time is when an application connects to an object. Resources are allocated in 
anticipation of interactions between the application and the object. An application can have 
several activations of the same object, each with a different expected usage pattern and 
required system properties. Activation binds resources to functions. Activation sets up 
communications links and assigns implementations to methods. At activation time, Photon 
creates a proxy object in the application's address space which implements the chosen 

38 



invocation policies.   Activation time decisions are limited to interactions between a specific 
application and a specific object. 

• Invocation Time is when an application calls an object. Most of the resource management 
decisions have already been made, and the only task left is to regulate the workload, such as 
blocking when a remote host is overloaded, and recovering from anomalies in system 
characteristics, such as host failure. The proxy object will implement the invocation policy 
and use the resource bindings when its methods are called. Invocation time decisions are 
limited to a specific call to a specific object. 

Notice that different players are involved at different times. Programmers design an object with only 
a vague idea of how objects will be used. System administrators create an object for their 
community of users. Finally, users connect to the object and actually do real work. As the time 
horizon shrinks, players have a more refined view about the actual system characteristics. Photon 
supports these views, by supplying hooks for collecting resource management information at these 
times, and for making resource allocation decisions. 

39 - 



Chapter 5.    Summary of Technical Progress and Suggestions for 
Further Research 

This chapter summarizes the technical progress made under the Integrated High Performance 
Distributed System (IHPDS) project, and makes suggestions about productive areas tor future work 
and research. 

5.1   Technical Progress 

A very important accomplishment of the IHPDS project was refining the Photon architecture. This 
architecture is the first full-featured distributed computing environment tailored and optimized for 
high-performance environments. Although there are other systems that include a feature similar to 
one found in Photon, such as global futures, or distributed shared memory, Photon is the first 
architecture to offer anywhere near as complete a palette of solutions to the programmer of 
high-performance distributed application software. 

Another important accomplishment of the IHPDS project was exploring resource management issues 
in depth, and incorporating hooks for resource management into the architecture. Effective dynamic 
resource management is critical for distributed applications to achieve truly high performance. The 
exact nature of the resources available to an application, and the contention for them from other 
applications, is generally not known at compile time; hence the importance of supporting dynamic 
resource management. 

A third accomplishment of the  IHPDS project was implementing the infrastructure to support the 
complete architecture.    The infrastructure has been carefully designed and implemented; it is not 
"prototype" or "demo" software. We have built the high-performance infrastructure required at the 
base of the Photon architecture; ft is optimized for use in high-performance environments. 

Figure 5-1 indicates the portions of the Photon architecture that have been implemented. Shaded 
boxes represent the components that have been at least partially implemented. A description of the 
important C++ classes making up the implementation and the Photon Interface Definition Language 
supported can be found in the Integrated High Performance Distributed System User's Manual [BBN]. 
In the Basic Services Layer, both Abstract Data Types and Unique Ids have been fully implemented. 
A complete set of built-in Abstract Data Types is provided, and a language based on the CORBA 
IDL is provided along with a parser so that users can create their own new Abstract Data Types. In 
the Advanced Services Layer, Distributed Shared Memory and Object Implementation Support have 
both been partially implemented. A complete preemptable threads package was implemented for 
Object Implementation Support. A shared heap, along with synchronization primitives such as 
mutexes and condition variables, was implemented for Distributed Shared Memory. In the Object 
Services Layer, both the Interlace Definition Language and Language Veneers were partially 
implemented. The portion of the Interlace Definition Lanaguage and C++ Language Veneer that 
support Abstract Data Type definition was completely implemented. 

An important decision made concerning the Photon infrastructure was to conform to CORBA 
[CORBA93] whenever possible. Photon is a full-featured architecture; although it is optimized for 
high-performance environments, invariably it has a subset generic to general distributed 
environments.    Although CORBA does not venture far into the world of high-performance, it does 

40 



have much to say about the interface of this subset of Photon. The decision was made to make this 
subset CORBA compliant. CORBA is a popular emerging standard; no other equivalent standard with 
its degree of acceptance currently exists. By being CORBA compliant, new Photon users that have 
had experience with other CORBA compliant systems will see many familiar features in Photon, and 
therefore only have to learn its novel features for high-performance. Another advantage of being 
CORBA compliant is that it offers the possibility of interoperating with objects built using other 
CORBA compliant systems. 

While on the subject of CORBA, the difference of Photon from CORBA and other similar entities 
should be mentioned. Photon is different from such systems as Cronus, CORBA, DCE, and Libra 
because, unlike these systems, it is architected, implemented, and optimized solely for high 
performance environments. 

In summary, the IHPDS project has developed a Photon architecture optimized for high performance 
environments, and produced a CORBA-compliant implementation of the base of that architecture. 

Application Layer 

Photon 
Object Services 
Layer 

:Interface Definition: 
^Language x^xlxiv:! 

^Language;: 
::::Veneers:::::: 

Location/Binding Class/ADT 
Registration 

Photon 
Advanced Services 
Layer 

Object 
Registration 

Global 
Futures 

^^Distributed:::::;:::::- 
x^Shared Memory: 

|:;:6bject Implementation;:! 
xSupjMrtj:;:;x£:£:;:;:;:£:x':::::j 

Object Access 
(proxies) 

Photon 
Basic Services 
Layer 

/Abstract Data;:; 
/Typeslvivixlxx; 

Messaging 
Support 

^Unique!: 

Photon Communication 
Support 

S 
E 
C 
U 
R 
I 
T 
Y 

M 
O 
N 
I 
T 
O 
R 
I 
N 
G 

Constituent Operating System Layer 

Figure 5-1:   Photon Implementation 

-  41 



5.2  Suggestions for Future Direction 

The base of the Photon architecture has been implemented; an obvious and productive direction for 
future work is to continue implementing the rest of the architecture. 

From largely anecdotal evidence, it seems to us that distributed shared memory has the potential for 
emerging as a very important and popular tool in distributed programming. Therefore expending 
additional effort in enhancing the Photon distributed memory architecture and implementing it fully 
would be productive. The implementation work on Photon concentrated on building a strong base for 
high-performance distributed shared memory. 

Our work on resource management exposed us to the many exciting possibilities for resource 
management mechanisms that could be encorporated into Photon. More effort directed at designing 
and implementing such mechanisms would be productive. Other research efforts on resource 
management should be studied for concepts to incorporate into Photon and implement. 

In summary, we suggest continuing the implementation of the full Photon architecture, and enhancing 
Photon's distributed shared memory and resource management architecture and implementation. 

- 42 



Chapter 6.   References 

[BBN] "Integrated High Performance Distributed System User's Manual," Contract Number 
F30602-92-C-0192, CDRL 007, BBN Report Number 8004, July 1994. 

[BENNETT90] J. Bennett, J. Carter, and W. Zwaenepoel, "Munin: Distributed Shared Memory Based 
on Type-Specific Memory Coherence," Proc. 1990 Conference on Principals and Practice of 
Parallel Programming, ACM Press, New York, NY, 1990, pp. 168-176. 

[BIRRELL85] Andrew D. Birrell, "Secure Communication Using Remote Procedure Calls," ACM 
Transactions on Computer Systems (TOCS) 3,1, Feb. 1985, pp 1-14. 

[BERETS89] Berets, James C. and Richard M. Sands, "Introduction to Cronus," BBN Systems and 
Technologies Corporation, Technical Report 6986, January 1989. 

[C93] Helen Custer, "Inside Windows NT," Microsoft Press, Redmond Washington, 1993. 

[CLARK89] David D Clark, Van Jacobson, John Romkey, Howard Salwen, "An Analysis of TCP 
Processing Overhead," IEEE Communications Magazine, June 1989, pp. 23-29. 

[CLARK90] David D Clark and David L. Tennenhouse, "Architectural Considerations for a New 
Generation of Protocols," SIGCOMM 90. 

[COPLIEN] James O. Coplien, "Advanced C++: Programming Styles and Idioms," Addison-Wesley, 
Reading, Mass., 1992. 

[CORBA93] Digital Equipment Corporation, Hewlett-Packard Company, HyperDesk Corporation, NCR 
Corporation, Object Design, Inc., SunSoft, Inc., "The Common Object Request Broker: 
Architecture and Specification", OMG. 

[DRUSCHEL93] Peter Druschel, Mark Abbott, Michael Pagels, Larry Peterson, "Network Subsystem 
Design," IEEE Network, Vol. 7 No. 4, July 1993, pp. 8-17. 

[GRIMSHAW92] Andrew Grimshaw, "Easy-to-Use Object-Oriented Parallel-Processing with Mentat," 
Technical Report No. Cs-92-32. University of Virginia. 

[HALSTEAD85] Halstead, R., "Multilisp: A Language for Concurrent Symbolic Computation," ACM 
Transactions on Programming Languages and Systems, vol. 7, no. 4, October 1985. 

[JOYCE87] Jeffrey Joyce, Greg Lomow, Konrad Slind, Brian Unger "Monitoring Distributed Systems," 
ACM Transactions on Computer Systems, Vol. 5, No. 2, May 1987, pp. 121-150. 

[KRST93]   M.   Frans   Kaashoek,   Robbert   Van   Renesse,   Hans   Van   Staveren,   and   Andrew   S. 

43 



Tanenbaum,   "FLIP:   An   Internetwork   Protocol  for  Supporting   Distributed   Systems,"   ACM 
TOCS, Vol. 11, No. 1, Feb. 1993,   p. 73 ft. 

[LAWRENCE]   Lawrence, Thomas, personal communication. 

[LISKOV85] Liskov, Barbara, "The Argus Language and System," Lecture Notes in Computer Science 
190, pp. 343-430, Springer-Verlag, 1985. 

[LISKOV88] Barbara Liskov, T. Bloom, D. Gifford, R. Scheifler, and W. Weihl, "Communication in the 
Mercury System," Proc. of the 21st Annual Hawaii Internation conference on System 
Sciences, January 1988, pp. 178-187. 

[NEEDHAM78] Roger M. Needham, and Michael D. Schroeder, "Using Encryption for Authentication in 
Large Networks of Computers," CACM 21,12, Dec. 1978, pp. 993-998. 

[OSF DCE RFC 32] R. Friedrich, "Requirements for Performance Instrumentation of DCE RPC and 
CDS services." 

[POSIX 1992] POSIX P1003.4a, "Threads Extension for Portable Operating Systems", IEEE. 

[RASHID86] R. F. Rashid, "Threads of a New System," Unix Review, Vol. 4,. No. 8, Aug. 1986, pp. 
37-49. 

[RINARD93] Martin C. Rinard, Daniel J. Scales, and Monica S. Lam, "Jade: A High-level 
Machine-Independent Language for Parallel Programming," IEEE Computer, June 1993, pp. 
28-38. 

[SATYAN89] M. Satyanarayan, "Integrating Security in a Large Distributed System," ACM TOCS 7,3, 
Aug. 1989,   pp. 247-280. 

[SCHANTZ85] Schantz, Richard E. and Robert H. Thomas, "Cronus, A Distributed Operating System: 
Functional Definition and System Concept," BBN Laboratories, Technical Report 5879, June 
1982, Revised January 1985. 

[SHIRLEY92] John Shirley, "Guide to Writing DCE Application," O'Reilly and Associates, Inc., 1992. 

[STEINER88] Jennifer Steiner, Cliff Neuman, and Jeff Schiller, "Kerberos: An Authentication Service 
for Open Network Systems," Winter USENIX 1988. 

[THEKKATH93] Chandramohan A. Thekkath and Henry M. Levy "Limits to Low-Latency 
Communication on High-Speed Networks, ACM Transactions on Computer Systems, May 
1993, pp 179-203. 

[TOUCH93] Joseph D. Touch, "Parallel Communication," INFOCOMM 93. 

[WALKER90] Walker, Edward; Richard Floyd, Paul Neves, "Asynchronous Remote Execution in 
Distributed Systems," Proceedings of the 10th International Conference on Distributed 
Computer systems, IEEE Computer Society, May 1990. 

[WILSON92] Linda F. Wilson, Mario J. Gonzalez, and Michael W. Cruess, "Experiences in High 
Performance   Computing  with   Pleiades   and   ESP,"   Proceedings  of  the   First   Intemation 

44 



BBN Report No. 7987 IHPDS Final Report 

Symposium on High-Performance Distributed Computing, IEEE Computer Society, 1992, pp. 
67-76. 

[ZHOU90] Songnian Zhou, Michael Stumm, and Tim Mclnemey, "Extending Distributed Shared 
Memory to Heterogeneous Environments," Proceedings of the 10th International Conference 
on Distributed Computing Systems, IEEE, 1990, pp. 30-37. 

«U.S. GOVERNMENT PRINTING OFFICE:      1995-610-126-50127 

-  45  - 



MISSION 

OF 

ROME LABORATORY 

Mission. The mission of Rome Laboratory is to advance the science and 
technologies of command, control, communications and intelligence and to 
transition them into systems to meet customer needs. To achieve this, 
Rome Lab: 

a. Conducts vigorous research, development and test programs in all 
applicable technologies; 

b. Transitions technology to current and future systems to improve 
operational capability, readiness, and supportability; 

c. Provides a full range of technical support to Air Force Materiel 
Command product centers and other Air Force organizations; 

d. Promotes transfer of technology to the private sector; 

e. Maintains leading edge technological expertise in the areas of 
surveillance, communications, command and control, intelligence, reliability 
science, electro-magnetic technology, photonics, signal processing, and 
computational science. 

The thrust areas of technical competence include: Surveillance, 
Communications, Command and Control, Intelligence, Signal Processing, 
Computer Science and Technology, Electromagnetic Technology, 
Photonics and Reliability Sciences. 


